Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

New and used temporal models: An issue of time

  • Published:
Applied Intelligence Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

TheSpecial Issue on Applications of Temporal Models raises many issues of time: What are the important properties of time? How can time be best represented? How can one reason about time-dependent properties? What are the important directions of temporal research? This introductory piece very briefly surveys the current wide variety of temporal models, temporal reasoning methods, and applications to time-varying phenomena. Promising areas of investigation such as the verification of concurrent systems, knowledge-base representation methods, and dealing with theFrame Problem pass in fleeting review. Brief introductions to each of the works in the volume close the section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. G. Hughes and M. Creswell,An Introduction to Modal Logic, Methuen: London, 1977.

    Google Scholar 

  2. Z. Manna, “The correctness of programs,”J. Computer Syst. Sci., vol. 3, pp. 119–127.

  3. A. Pnueli, “The temporal semantics of concurrent programs,”Proc. 18th Symp. Foundations Comput. Sci., IEEE, Providence, RI, November 1977, pp. 46–57.

    Google Scholar 

  4. J. van Benthem, “Time, logic and computation,” inLinear Time, Branching Time and Partial Order in Logics and Models for Concurrency, edited by J. de Bakker, W.-P. de Roever, and G. Rozenberg, Springer-Verlag, New York, 1989, pp. 1–49.

    Google Scholar 

  5. S. Owicki and D. Gries, “An axiomatic proof technique kfor parallel programs I,”Acta Informatica vol. 6, no. 1, pp. 319–340, 1976.

    Google Scholar 

  6. P. Ladkin, “Specification of time dependencies and synthesis of concurrent processes,”Ninth ACM Software Eng. Conf., 1987, pp. 106–115.

  7. L. Lamport, “The mutual exclusion problem: Part I—A theory of interprocess communication and Part II—statement and solutions,”J. ACM vol. 33, no. 2, pp. 313–348, 1986.

    Google Scholar 

  8. L. Lamport, “A new approach to proving the correctness of multiprocess programs,”ACM Trans. Programming Languages Syst. vol. 1, pp. 84–97, 1979.

    Google Scholar 

  9. F. Anger, “On Lamport's interprocessor communication model,”ACM Trans. Programming Languages Syst. vol. 11, no. 3, pp. 404–417, 1989.

    Google Scholar 

  10. R. Rodriguez, F. Anger, and K. Ford, “Temporal reasoning: a relativistic model,”Int. J. Intell. Syst. vol. 6, pp. 237–254, June 1991.

    Google Scholar 

  11. L. Lamport, “A temporal logic of actions,”SRC Res. Rep., vol. 5, Digital, 1990.

  12. K. Chandy and J. Misra,Parallel Program Design, Addison-Wesley: Reading, MA, 1988.

    Google Scholar 

  13. B. Alpern and F. Schneider, “Verifying temporal properties without temporal logic,”ACM Trans. Programming Languages Syst. vol. 11, no. 1, pp. 147–167, 1989.

    Google Scholar 

  14. C. Wong, T. Dillon, and K. Forward, “Concurrent, real-time systems: a systematic approach using timed petri nets,”Comput. Syst. Sci. Eng. vol. 2, no. 3, pp. 117–124, 1987.

    Google Scholar 

  15. M. Hennesy,Algebraic Theory of Processes, MIT Press, Cambridge, MA, 1988.

    Google Scholar 

  16. R. Milner, “A Calculus of communicating systems,”Lecture Notes in Computer Science, vol. 92, Springer-Verlag: New York, 1980.

    Google Scholar 

  17. G. Winskel, “An introduction to event structures,” inLinear Time, Branching Time and Partial Order in Logics and Models for Concurrency, edited by J. de Bakker, W.-P. de Roever, and G. Rozenberg, Springer-Verlag: New York, 1989, pp. 364–397.

    Google Scholar 

  18. E. Clarke, E. Emerson, and A. Sistla, “Automatic verification of finite-state concurrent systems using temporal logic specifications,”ACM Trans. Programming Languages Syst. vol. 8, no. 2, pp. 244–263, 1986.

    Google Scholar 

  19. A. Prior,Time and Modality, Clarendon Press: Oxford, 1957.

    Google Scholar 

  20. R. Rodriguez and F. Anger, “Prior's legacy in computer science,”Logic and Reality: Essays in Pure and Applied Logic; In Memory of Arthur Prior, edited by J. Copeland, Oxford University Press: Oxford, 1993.

    Google Scholar 

  21. E. Emerson and E. Clarke, “Characterizing Properties of Parallel Programs as Fixpoints,” inProc. Seventh Int. Colloq. Automata and Language Programming.Lecture Notes in Computer Science, vol.85, Springer-Verlag, New York, 1981, pp. 169–181.

    Google Scholar 

  22. E. Emerson and J. Halpern, “Sometimes” and “Not Never” revisited: on branching versus linear time, inProc. Tenth ACM Symp. Principles Programming Languages, 1983, pp. 169–180.

  23. E. Clarke and O. Grumberg, “Research on automatic verification of finite-state concurrent systems,”Ann. Rev. Comput. Sci. vol. 2, pp. 269–290, 1987.

    Google Scholar 

  24. J. Halpern, Z. Manna, and B. Moszkowski, “A hardware semantics based on temporal intervals,” Technical Report STAN-CS-83-963, Department of Computer Science, Stanford University, Stanford, 1983.

    Google Scholar 

  25. J. Allen, “Maintaining knowledge about temporal intervals,”Commun. ACM vol. 26, no. 11, pp. 832–843, 1983.

    Google Scholar 

  26. J. Allen, “Towards a general theory of action and time,”Artif. Intell. vol. 23, pp. 123–154, 1984.

    Google Scholar 

  27. J. van Benthem,A Manual of Intensional Logic, 2nd ed., Center for the Study of Language and Information (CSLI): Stanford, CA, 1988.

    Google Scholar 

  28. Y. Shoham,Reasoning about Change: Time and Causation from the Standpoint of Artificial Intelligence, MIT Press: Cambridge, MA, 1988.

    Google Scholar 

  29. B. Russell,Our Knowledge of the External World, Allen and Unwin: London, 1926.

    Google Scholar 

  30. R. Floyd, “Assigning meanings to programs,”Proc. Am. Math. Soc. Symp. Appl. Math. vol. 19, pp. 19–31, 1967.

    Google Scholar 

  31. C. A. R. Hoare, “An axiomatic basis for computer programming,”Commun. ACM vol. 12, no. 10, pp. 576–580, 1969.

    Google Scholar 

  32. R. DeMillo, R. Lipton, and A. Perlis, “Social processes and proofs of theorems and programs,”Commun. ACM vol. 22, no. 5, pp. 271–380, 1979.

    Google Scholar 

  33. J. Fetzer, “Program verification: the very idea,”Commun. ACM vol. 31, no. 9, pp. 1048–1063, 1988.

    Google Scholar 

  34. E. Clarke and E. Emerson, “Syntheses of synchronization skeletons for branching time temporal logic,” inProc. Workshop on Logic of Programs, Springer-Verlag: Yorktown Heights, NY, 1981, pp. 52–71.

    Google Scholar 

  35. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi, “The temporal analysis of fairness,”Seventh ACM Symp. Principles Programming Languages, 1980, pp. 164–173.

  36. J. Quielle and J. Sifakis, “Specification and verification of concurrent systems in CESAR,”Proc. Fifth Int. Symp. Programming, Springer-Verlag: New York, 1981, pp. 337–351.

    Google Scholar 

  37. A. Sistla and E. Clarke, “Complexity of propositional temporal logics,”J. ACM vol. 32, no. 3, pp. 733–749, 1986.

    Google Scholar 

  38. B. Mishra and E. Clarke, “Hierarchical verification of asynchronous circuits using temporal logics,”Theory Comput. Sci. vol. 38, pp. 269–291, 1985.

    Google Scholar 

  39. M. Browne, “An improved algorithm for the automatic verification of finite state systems using temporal logic,” inProc. Conf. Comput. Sci., Cambridge, MA, 1986, pp. 260–267.

  40. M. Browne and E. Clarke, SML: a high level language for the design and verification of finite-state machines. InIFIP WG 10.2 Int. Workshop Conf. HDL Descriptions to Guaranteed Correct Circuit Designs, Grenoble, France, 1986, pp. 269–292.

  41. D. Dill and E. Clarke, “Automatic verification of asynchronous circuits using temporal logic,”IEE Proc. vol. 5, part E. no. 5, pp. 276–282, 1986.

    Google Scholar 

  42. R. Kurshan, “Testing containment of W-regular languages,” Technical Report 1121-861010-33-TM, Bell Labs Technical Memo, 1986.

  43. O. Lichtenstein and A. Pnueli, “Checking that finite state concurrent programs satisfy their linear specification,” inConf. Rec. Twelfth Annual ACM Symp. Principles Programming Languages, New Orleans, LA, 1985, pp. 97–107.

  44. E. Emerson and C. Lei, “Modalities for model checking: branching time strikes back,”Twelfth Symp. Principles Programming Languages, New Orleans, LA, 1985, pp. 84–96.

  45. M. Vardi and P. Wolper, “An automata theoretic approach to automatic program verification,” inProc. Conf. Logic in Computer Sci., Boston, MA, 1986, pp. 332–344.

  46. S. Ben-David, “The global time assumption and semantics for concurrent systems.Proc. Seventh ACM Symp. Principles Distributed Comput., Toronto, 1988, pp. 223–231.

  47. U. Abraham, S. Ben-David, and M. Magidor, “On global-time inter-process communication,” inSemantics for Concurrency, edited by M. Kwiatkowska, M. Shields, and R. Thomas, Springer-Verlag: Leicester, 1990.

    Google Scholar 

  48. A. Tarski, “On the calculus of relations,”J. Symbolic Logic vol. 6, pp. 73–89, 1941.

    Google Scholar 

  49. P. Ladkin, “Satisfying first-order constraints about time intervals,”Proc. Seventh Natl. Conf. Artif. Intell., St. Paul, MN, August 1988, pp. 512–517.

  50. R. Rodriguez and F. Anger, “Reasoning in relativistic time,” Submitted, July 1989.

  51. F. Anger and R. Rodriguez, “Time, tense, and relativity,”Proc. Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), Paris, France, July 1990, pp. 74–78.

  52. F. Anger, P. Ladkin, and R. Rodriguez, “Atomic temporal interval relations in branching time: calculation and application,”Appl. Artif. Intell. IX, Proc. SPIE, Orlando, FL, April 1991, pp. 122–136.

  53. F. Anger and R. Rodriguez, “F-Complexes: a set theoretic approach to temporal modeling,”Proc. IEA/AIE Fourth Int. Conf. Indust. Eng. Appl. Artif. Intell. Expert Syst., Hawaii, June 1991, pp. 609–617.

  54. F. Anger and R. Rodriguez, “Time, tense, and relativity revisited,”Lecture Notes in Computer Science, edited by B. Bouchon-Meunier, R. Yager, and L. Zadeh, Springer-Verlag: New York, 1991.

    Google Scholar 

  55. S. Grossberg,Neural Networks and Natural Intelligence, MIT Press: Cambridge, MA, 1988.

    Google Scholar 

  56. R. Gawronski, F. Anger, and R. Rodriguez, “A discrete temporal model of dynamic processes in the dendritic tree of neurons,”Proc. Third Florida Artif. Intell. Res. Symp. (FLAIRS), Cocoa, FL, April 1990, pp. 274–279.

  57. R. Gawronski and R. Rodriguez, “A learning algorithm for the classification of dynamic events using a neuronlike dynamic tree,”Int. J. Intell. Syst., to appear.

  58. J. Allen, “Time and time again: the many ways to represent time,”Int. J. Intell. Syst. vol. 6, no. 4, pp. 341–355, 1991.

    Google Scholar 

  59. T. Dean, “Large-scale temporal data bases for planning in complex domains,”Proc. Int. Joint Conf. Artif. Intell., Milan, Italy, August 1987, pp. 860–866.

  60. Y. Shoham, “Chronological ignorance: experiments in nonmonotonic temporal reasoning,”Artif. Intell. vol. 36, no. 3, pp. 279–331, 1988.

    Google Scholar 

  61. D. McDermott, “A temporal logic for reasoning about processes and plans,”Cogn. Sci. vol. 6, pp. 101–155, 1982.

    Google Scholar 

  62. J. McCarthy and P. Hayes, “Some philosophical problems from the standpoint of artificial intelligence,” inMachine Intell., vol. 4, Edinburgh University Press: Edinburgh, 1969, pp. 463–502.

    Google Scholar 

  63. J. McCarthy, “Circumscription—a form of non-monotonic reasoning,”Artif. Intell. vol. 13, nos. 1 and 2, pp. 27–39, 1980.

    Google Scholar 

  64. M. Ginsberg and D. Smith, “Reasoning about action I: a possible worlds approach and II: the qualification problem,”Proc. Workshop on The Frame Problem, 1987, pp. 233–87.

  65. J. van Benthem, “Modal logic as a theory of information,” inLogic and Reality: Essays in Pure and Applied Logic: In Memory of Arthur Prior, edited by J. Copeland, Oxford University Press: Oxford, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anger, F.D., Clarke, E.M. New and used temporal models: An issue of time. Appl Intell 3, 5–15 (1993). https://doi.org/10.1007/BF00871719

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00871719

Key words