Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Simulated annealing for constrained global optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Hide-and-Seek is a powerful yet simple and easily implemented continuous simulated annealing algorithm for finding the maximum of a continuous function over an arbitrary closed, bounded and full-dimensional body. The function may be nondifferentiable and the feasible region may be nonconvex or even disconnected. The algorithm begins with any feasible interior point. In each iteration it generates a candidate successor point by generating a uniformly distributed point along a direction chosen at random from the current iteration point. In contrast to the discrete case, a single step of this algorithm may generateany point in the feasible region as a candidate point. The candidate point is then accepted as the next iteration point according to the Metropolis criterion parametrized by anadaptive cooling schedule. Again in contrast to discrete simulated annealing, the sequence of iteration points converges in probability to a global optimum regardless of how rapidly the temperatures converge to zero. Empirical comparisons with other algorithms suggest competitive performance by Hide-and-Seek.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts, E. H. L. and J. H. M. Korst (1988),Simulated Annealing and Boltzmann Machines, Wiley, Chichester.

    Google Scholar 

  • Aarts, E. H. L. and P. J. M. van Laarhoven (1989), Simulated annealing: an introduction,Statistica Neerlandica 43, 31–52.

    Google Scholar 

  • Aluffi-Pentini, F., V. Parisi, and F. Zirilli (1985), Global optimization and stochastic differential equations,Journal of Optimization Theory and Applications 47, 1–16.

    Google Scholar 

  • Ballard, D. H., C. O. Jelinek, and R. Schinzinger (1974), An algorithm for the solution of constrained generalized polynomial programming problems,The Computer Journal 17, 261–266.

    Google Scholar 

  • Bélisle, C. J. P. (1992), Convergence theorems for a class of simulated annealing algorithms on ℝd,Journal of Applied Probability 29, 885–895.

    Google Scholar 

  • Bélisle, C. J. P., H. E. Romeijn, and R. L. Smith (1993), Hit-and-run algorithms for generating multivariate distributions,Mathematics of Operations Research 18, 255–266.

    Google Scholar 

  • Berbee, H. C. P., C. G. E. Boender, A. H. G. Rinnooy Kan, C. L. Scheffer, R. L. Smith, and J. Telgen (1987), Hit-and-run algorithms for the identification of nonredundant linear inequalities,Mathematical Programming 37, 184–207.

    Google Scholar 

  • Boender, C. G. E., R. J. Caron, A. H. G. Rinnooy Kan, J. F. McDonald, H. E. Romeijn, R. L. Smith, J. Teigen, and A. C. F. Vorst (1991), Shake-and-Bake algorithms for generating uniform points on the boundary of bounded polyhedra,Operations Research 39, 945–954.

    Google Scholar 

  • Bohachevsky, I. O., M. E. Johnson, and M. L. Stein (1986), Generalized simulated annealing for function optimization,Technometrics 28, 209–217.

    Google Scholar 

  • Bremmerman, H. (1970), A method of unconstrained global optimization,Mathematical Biosciences 9, 1–15.

    Google Scholar 

  • Corana, A., M. Marchesi, C. Martini, and S. Ridella (1987), Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm,ACM Transactions on Mathematical Software 13, 262–280.

    Google Scholar 

  • De Haan, L. F. M. (1981), Estimation of the minimum of a function using order statistics,Journal of the American Statistical Association 76, 467–469.

    Google Scholar 

  • Dekker, A. and E. H. L. Aarts (1991), Global optimization and simulated annealing,Mathematical Programming 50, 367–393.

    Google Scholar 

  • Dixon, L. C. W. and G. P. Szegö (1978),Towards Global Optimization 2, North-Holland, Amsterdam, The Netherlands.

    Google Scholar 

  • Doob, J. L. (1953),Stochastic Processes, Wiley, New York, NY.

    Google Scholar 

  • Hajek, B. (1988), Cooling schedules for optimal annealing,Mathematics of Operations Research 13, 311–329.

    Google Scholar 

  • Hwang, C. (1980), Laplace's method revisited: weak convergence of probability measures,The Annals of Probability 8, 1177–1182.

    Google Scholar 

  • Kaufman, D. E. and R. L. Smith (1991), Optimal direction choice for Hit-and-Run sampling, Technical Report 90-08, Department of Industrial and Operations Engineering, The University of Michigan, Ann Arbor, Michigan.

    Google Scholar 

  • Kirkpartick, S., C. D. Gelatt Jr., and M. P. Vecchi (1983), Optimization by simulated annealing,Science 20, 671–680.

    Google Scholar 

  • Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953), Equations of state calculations by fast computing machines,The Journal of Chemical Physics 21, 1087–1092.

    Google Scholar 

  • Nummelin, E. (1984),General Irreducible Markov Chains and Non-Negative Operators, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Patel, N. R., R. L. Smith, and Z. B. Zabinsky (1988), Pure adaptive search in Monte Carlo optimization,Mathematical Programming 43, 317–328.

    Google Scholar 

  • Pncus, M. (1968), A closed form solution for certain programming problems,Operations Research 16, 690–694.

    Google Scholar 

  • Pincus, M. (1970), A Monte-Carlo method for the approximate solution of certain types of constrained optimization problems,Operations Research 18, 1225–1228.

    Google Scholar 

  • Rinnooy Kan, A. H. G. and G. T. Timmer (1984), Stochastic methods for global optimization,American Journal of Mathematical and Management Sciences 4, 7–40.

    Google Scholar 

  • Rinnooy Kan, A. H. G. and G. T. Timmer (1987a), Stochastic global optimization methods; part I: clustering methods,Mathematical Programming 39, 27–56.

    Google Scholar 

  • Rinnooy Kan, A. H. G. and G. T. Timmer (1987b), Stochastic global optimization methods; part II: multilevel methods,Mathematical Programming 39, 57–78.

    Google Scholar 

  • Romeijn, H.E. and R. L. Smith (1990), Sampling through random walks. Technical Report 90-02. Department of Industrial and Operations Engineering, The University of Michigan, Ann Arbor, MI.

    Google Scholar 

  • Rubinstein, R. Y. (1981),Simulation and the Monte Carlo Method, Wiley, New York, NY.

    Google Scholar 

  • Smith, R. L. (1984), Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions,Operations Research 32, 1296–1308.

    Google Scholar 

  • Timmer, G. T. (1984),Global optimization: a stochastic approach. PhD thesis, Erasmus University Rotterdam, Rotterdam, The Netherlands.

    Google Scholar 

  • Zabinsky, Z. B. and R. L. Smith (1992), Pure adaptive search in global optimization,Mathematical Programming 53, 323–338.

    Google Scholar 

  • Zabinsky, Z. B., R. L. Smith, J. F. McDonald, H. E. Romeijn, and D. E. Kaufman (1993), Improving Hit-and-Run for global optimization,Journal of Global Optimization 3, 171–192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This material is based on work supported by a NATO Collaborative Research Grant, no. 0119/89.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romeijn, H.E., Smith, R.L. Simulated annealing for constrained global optimization. J Glob Optim 5, 101–126 (1994). https://doi.org/10.1007/BF01100688

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01100688

Key words