Abstract
The results from Invariant Theory and the results for semi-invariants and equivariants are summarized in a suitable way for combining with Gröbner basis computation. An algorithm for the determination of fundamental equivariants using projections and a Poincaré series is described. Secondly, an algorithm is given for the representation of an equivariant in terms of the fundamental equivariants. Several ways for the exact determination of zeros of equivariant systems are discussed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Barany, E., Dellnitz, M., Golubitsky, M.: Detecting the Symmetry of Attractors. Physica D67, 66–87 (1993)
Becker, Th., Weispenning, V.: Gröbner Bases. A Computational Approach to Commutative Algebra. In: Cooperation with H. Kredel. Berlin, Heidelberg, New York: Springer 1993
Chevalley, C.: Invariants of finite groups generated by reflections. Am. J. Math.77, 778–782 (1955)
Cox, D., Little, J., O'Shea, D.: Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Berlin, Heidelberg, New York: Springer 1992
Dieudorme, J., Carrel, J. B.: Invariant Theory, Old and New. New York: Academic Press 1971
Fässler, A., Stiefel, E.: Group Theoretical Methods and Their Applications. Boston Birkhäuser 1992
Field, M. J., Richardson, R. W.: Symmetry Breaking and the Maximal Isotropy Subgroup Conjecture for Reflection Groups. In: Truesdel, C. (ed) Archive for Rational Mechanics and Analysis Vol. 105. Berlin, Heidelberg, New York: Springer 1989
Gatermann, K.: Symbolic solution of polynomial equation systems with symmetry. In: Watanabe, Sh.: Nagata, M. (eds) Proceedings of ISSAC-90 (Tokyo, Japan, August 20–24, 1990), pp 112–119. New York: ACM 1990
Gaterman, K.: Werner, B.: Secondary Hopf Bifurcation Caused by Steady-state Steady-state Mode interaction. In: Chaddam, J., Golubitsky, M., Langford, W., Wetton, B. (eds) Pattern Formations: Symmetry Methods and Applications, Fields Institute Com. Series, 1994
Gatermann, K.: A remark on the detection of symmetry of attractors. In: Chossat, P. (ed) Dynamics, Bifurcation and Symmetry. Kluwer Academic Publishers, Dordrecht, 1994
Golubitsky, M., Stewart, I., Schaeffer, D. G.: Singularities and Groups in Bifurcation Theory. Vol. II, Berlin, Heidelberg, New York: Springer 1988
Hearn, A. C.: REDUCE User's Manual, Version 3.5. The RAND Corp., Santa Monica, USA 1993
Hochster, M., Eagon, J. A.: Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci. Am. J. Math.93, 1020–1058 (1971)
Hochster, M., Roberts, J.: Rings of invariants of reductive groups acting on regular rings are Cohen-Macauley. Adv. Math.13, 115–175 (1974)
Jaric, M. V., Michel, L., Sharp, R. T.: Zeros of covariant vector fields for the point groups: invariant formulation. J. Phys.45, 1–27 (1984)
Kemper, G. The Invar Package for Calculating Rings of Invariants. Maple Share library, 1993
McShane, J. M., Grove, L. C.: Polynomial Invariants of Finite Groups. In Algebras, Groups and Geometries10, 1–12 (1993)
Melenk, H., Möller, H. M., Neun, W.: GROEBNER A Package for Calculating Groebner Bases. Available with REDUCE 1992
Melenk, H., Möller, H. M., Neun, W.: Symbolic solution of large stationary chemical kinetics problems. Impact. Comput. Sci. Eng.1, 138–167 (1989)
Molien, T.: Über die Invarianten der linearen Substitutionsgruppe. Königl. Preuss. Akad. Wiss,pp. 1152–1156, 1897
Noether, E.: Der Endlichkeitssatz der Invarianten endlicher Gruppen. Math. Ann.77, 89–92 (1916)
Sattinger, D. H.: Group Theoretic Methods in Bifurcation Theory. Lecture Notes in Mathematics vol. 762. Berlin, Heidelberg, New York: Springer 1979
Schwarz, G. W.: Lifting Smooth Homotopies of Orbit Spaces. In Institut des Hautes Ètudes Scientifiques, Publications Mathématiques 51, 1980
Serre, J. P.: Linear Representations of Finite Groups. Berlin, Heidelberg, New York: Springer 1977
Sloane, N. J. A.: Error-correcting codes and invariant theory: new applications of a nineteenthcentury technique. Am. Math. Monthly84, 82–107 (1977)
Stanley, R. P.: Invariants of finite groups and their applications to combinatorics. Bulletin Am. Math. Soc.1, 475–511 (1979)
Sturmfels, B.: Algorithms in Invariant Theory. Wien: Springer 1993
Verscheide, J., Gatermann, K.: Symmetric Newton Polytopes for Solving Sparse Polynomial Systems. Konard-Zuse-Zentrum, Preprint SC 94-3, 1994. Accepted for publication by Advances in Applied Mathematics
Workfold, P. A.: Zeros of equivariant vector fields: Algorithms for an invariant approach. To appear in J. Symbolic Computation 1994
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Gatermann, K. Semi-Invariants, equivariants and algorithms. AAECC 7, 105–124 (1996). https://doi.org/10.1007/BF01191379
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01191379