Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Criteria for approximation of linear and affine functions

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. Danzer, B. Grünbaum andV. Klee, Helly's Theorem and its Relatives. Convexity, Proc. VIIth Symp. Pure Math. of the AMS, June 13–15, 1961, V. L. Klee, ed., Amer. Math. Soc. Providence, 101–180 (1963).

    Google Scholar 

  2. B. Grünbaum, Common transversals for families of sets. J. London Math. Soc.35, 408–416 (1960).

    Google Scholar 

  3. S. Karlin andL. S. Shapley, Some applications of a theorem on convex functions. Ann. of Math.52, 148–153 (1950).

    Google Scholar 

  4. C. E. Kim, Three-Dimensional Digital Planes. IEEE Trans. Pattern Analysis & Machine Intelligence. PAMI6, 639–645 (1984).

    Google Scholar 

  5. C. Ronse, A Simple Proof of Rosenfeld's Characterization of Digital Straight Line Segments. Pattern Recognition Letters3, 323–326 (1985).

    Google Scholar 

  6. A. Rosenfeld, Digital Straight Line Segments. IEEE Trans. Comput.C-23, 1264–1269 (1974).

    Google Scholar 

  7. L. A. Santaló, Complemento a la nota: Un teorema sôbre conjuntos de paralelepipedos de aristas paralelas. Publ. Inst. Math. Univ. Nac. Litoral2, 49–60 (1940).

    Google Scholar 

  8. J.Stoer and C.Witzgall, Convexity and Optimization in Finite Dimensions I, Berlin-Heidelberg-New York 1970.

  9. I. M.Yaglon and V. G.Boltyanskii, Convex Figures. New York 1961.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronse, C. Criteria for approximation of linear and affine functions. Arch. Math 46, 371–384 (1986). https://doi.org/10.1007/BF01200469

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01200469

Keywords