Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The asymptotic behaviour of the number of three-connected triangulations of the disk, with a reflective symmetry in a line

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

We consider the enumeration of the three-connected triangulations of the disk, with a reflective symmetry about a line. The asymptotic behavior is unlike that observed for rooted maps or for maps having rotational symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Bender: Asymptotic methods in enumeration,SIAM Rev. 16 (1974), 485–515.

    Article  MathSciNet  Google Scholar 

  2. E. A. Bender andE. R. Canfield: The asymptotic number of rooted maps on a surface,J. Combinatorial Theory (A)43 (1986), 244–257.

    Article  MathSciNet  Google Scholar 

  3. E. A. Bender andE. R. Canfield: The asymptotic number of tree-rooted maps,J. Combinatorial Theory (A)48 (1988), 156–164.

    Article  MathSciNet  Google Scholar 

  4. E. A. Bender andL. B. Richmond: A survey of the asymptotic behavior of maps, (preprint)

  5. E. A. Bender andN. C. Wormald: The asymptotic number of rooted two-connected maps on a surface,J. Combinatorial Theory (A) (to appear).

  6. W. G. Brown: Enumeration of triangulations of the disk,Proc. London Math. Soc. (3)14 (1964), 746–768.

    Article  MathSciNet  Google Scholar 

  7. E. R. Canfield: Remarks on an asymptotic method in combinatorics,J. Combinatorial Theory (A)37 (1984), 348–352.

    Article  MathSciNet  Google Scholar 

  8. Z. C. Gao: The number of rooted triangular maps on a surface,J. Combinatorial Theory (B) (to appear).

  9. E. Hille: “Analytic Function Theory”, Vol. II, Ginn and Company, 1962.

  10. F. W. J. Olver: “Asymptotics and Special Functions” Academic Press, New York, 1974

    MATH  Google Scholar 

  11. W. T. Tutte: A census of planar triangulations,Canad. J. Math. 15 (1962), 21–38.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, D.M., Richmond, L.B. The asymptotic behaviour of the number of three-connected triangulations of the disk, with a reflective symmetry in a line. Combinatorica 12, 149–153 (1992). https://doi.org/10.1007/BF01204718

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01204718

AMS subject classification code (1991)