Summary
The Hasimoto transformation (relating vortex filament flow to the nonlinear Schrödinger equation) is interpreted in the context of Poisson geometry with the aid of a compact formula for its differential. A useful relationship is derived between Killing fields for soliton solutions of the filament flow and the sequence of commuting Hamiltonian flows.
Similar content being viewed by others
References
R. Abraham and J. Marsden,Foundations of Mechanics, Benjamin-Cummings, Reading, Mass., 1978.
G. K. Batchelor,An Introduction to Fluid Dynamics, Cambridge University Press, New York, 1967.
L. Faddeev and L. Takhtajan,Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin, 1980.
I. Gelfand and I. Dorfman, Schouten bracket and Hamiltonian operators,Functional Anal. Appl. 14 (1981), p. 223.
I. Gelfand and I. Dorfman, Hamiltonian operators and infinite-dimensional Lie algebras,Functional Anal. Appl. 14 (1981), p. 173.
A. Hasegawa,Optical Solitons in Fibers, Springer-Verlag, Berlin, 1989.
H. Hasimoto, Motion of a vortex filament and its relation to elastica,J. Phys. Soc. Jap. 31 (1971), p. 293.
H. Hasimoto, A soliton on a vortex filament,J. Fluid Mech. 51 (1972), p. 477.
N. J. Hicks,Notes on Differential Geometry, Van Nostrand, Princeton, N. J., 1965.
G. L. Lamb,Elements of Soliton Theory, Wiley Interscience, New York, 1980.
J. Langer and R. Perline, The Hasimoto transformation and integrable flows on curves,Appl. Math. Lett.,3 (2) (1990) pp. 61–64.
J. Langer and D. Singer, The total squared curvature of closed curves,J. Differential Geom. 20 (1984), p. 1.
J. Langer and D. Singer, Knotted elastic curves in ℝ3,J. London Math. Soc. (2)30 (1984), p. 512.
Lugt,Vortex flows in nature and technology, Wiley, Somerset, N.J., 1983.
F. Magri, A simple model of the integrable hamiltonian equation,J. Math. Phys. 19(5) (1978), p. 1156.
J. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids,Physica 7D (1983), p. 305.
P. J. Olver,Applications of Lie Groups to Differential Equations, Springer-Verlag, Berlin, 1986.
P. J. Olver, Recursion operators and Hamiltonian systems,Proceedings of the International School on Applied Mathematics, Paipa, Columbia, 1988.
A. Shabat and V. Zakharov, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,Sov. Phys. JETP 34 (1972), p. 62.
A. Weinstein, The local structure of Poisson manifolds,J. Differential Geom. 18 (1983), p. 523.
G. Whitham,Linear and Nonlinear Waves, Wiley-Interscience, New York, 1974.
Author information
Authors and Affiliations
Additional information
Communicated by Jerrold Marsden
Rights and permissions
About this article
Cite this article
Langer, J., Perline, R. Poisson geometry of the filament equation. J Nonlinear Sci 1, 71–93 (1991). https://doi.org/10.1007/BF01209148
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF01209148