Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Poisson geometry of the filament equation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

The Hasimoto transformation (relating vortex filament flow to the nonlinear Schrödinger equation) is interpreted in the context of Poisson geometry with the aid of a compact formula for its differential. A useful relationship is derived between Killing fields for soliton solutions of the filament flow and the sequence of commuting Hamiltonian flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Abraham and J. Marsden,Foundations of Mechanics, Benjamin-Cummings, Reading, Mass., 1978.

    Google Scholar 

  • G. K. Batchelor,An Introduction to Fluid Dynamics, Cambridge University Press, New York, 1967.

    Google Scholar 

  • L. Faddeev and L. Takhtajan,Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  • I. Gelfand and I. Dorfman, Schouten bracket and Hamiltonian operators,Functional Anal. Appl. 14 (1981), p. 223.

    Google Scholar 

  • I. Gelfand and I. Dorfman, Hamiltonian operators and infinite-dimensional Lie algebras,Functional Anal. Appl. 14 (1981), p. 173.

    Google Scholar 

  • A. Hasegawa,Optical Solitons in Fibers, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  • H. Hasimoto, Motion of a vortex filament and its relation to elastica,J. Phys. Soc. Jap. 31 (1971), p. 293.

    Google Scholar 

  • H. Hasimoto, A soliton on a vortex filament,J. Fluid Mech. 51 (1972), p. 477.

    Google Scholar 

  • N. J. Hicks,Notes on Differential Geometry, Van Nostrand, Princeton, N. J., 1965.

    Google Scholar 

  • G. L. Lamb,Elements of Soliton Theory, Wiley Interscience, New York, 1980.

    Google Scholar 

  • J. Langer and R. Perline, The Hasimoto transformation and integrable flows on curves,Appl. Math. Lett.,3 (2) (1990) pp. 61–64.

    Google Scholar 

  • J. Langer and D. Singer, The total squared curvature of closed curves,J. Differential Geom. 20 (1984), p. 1.

    Google Scholar 

  • J. Langer and D. Singer, Knotted elastic curves in ℝ3,J. London Math. Soc. (2)30 (1984), p. 512.

    Google Scholar 

  • Lugt,Vortex flows in nature and technology, Wiley, Somerset, N.J., 1983.

    Google Scholar 

  • F. Magri, A simple model of the integrable hamiltonian equation,J. Math. Phys. 19(5) (1978), p. 1156.

    Google Scholar 

  • J. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids,Physica 7D (1983), p. 305.

    Google Scholar 

  • P. J. Olver,Applications of Lie Groups to Differential Equations, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  • P. J. Olver, Recursion operators and Hamiltonian systems,Proceedings of the International School on Applied Mathematics, Paipa, Columbia, 1988.

    Google Scholar 

  • A. Shabat and V. Zakharov, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,Sov. Phys. JETP 34 (1972), p. 62.

    Google Scholar 

  • A. Weinstein, The local structure of Poisson manifolds,J. Differential Geom. 18 (1983), p. 523.

    Google Scholar 

  • G. Whitham,Linear and Nonlinear Waves, Wiley-Interscience, New York, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Jerrold Marsden

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langer, J., Perline, R. Poisson geometry of the filament equation. J Nonlinear Sci 1, 71–93 (1991). https://doi.org/10.1007/BF01209148

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01209148

Key words