Abstract
Complete integrability in Liouville's sense is proven for rotation of an arbitrary rigid body with a fixed point in a Newtonian field with an arbitrary homogeneous quadratic potential. A consequences is the complete integrability of rotation of a rigid body with fixed center of mass in the field of arbitrary sufficiently remote objects (in the second approximation). Explicit formulae are obtained expressing angular velocities of the rigid body in terms of θ-functions for Riemannian surfaces. Integrable cases are found for rotation of a rigid body in nonlinear Newtonian potential fields.
Similar content being viewed by others
References
Euler, L.: Decouverte d'une nouveau principle de mechanique. Memories de l'Acad. des Sci. de Berlin14, 154–193 (1758)
Lagrange, J.: Mechanique analytique. Paris: Gauthier-Villars 1888
Kowalewski, S.: Sur le probleme della rotation d'un corps solide autour d'un point fixe. Acta Math.12, 177–232 (1889)
Brun, F.: Rotation kring fix punkt. Öfversigt at Kongl. Svenska Vetenskaps Akademies Förhadlingar, Stockholm7, 455–468 (1893)
Brun, F.: Rotation kring fix punkt II, III. Ark. Mat. Ast. Fys.4, 4, 1–4 (1907);6, 5, 1–10 (1909)
Goryachev, D.I.: Some general integrals in the problem of dynamics of a rigid body (in Russian). Warsaw: Warsaw Educational District Printery 1910
Clebsch, A.: Über die Bewegung eines Körpers in einer Flüssigkeit. Math. Ann.3, 238–262 (1871)
Steklov, V.A.: On motion of a rigid body in fluid (in Russian). Kharkov: Darre Printing House 1893
Lyapunov, A.M.: A new case of integrability for differential equations describing motion of a rigid body in fluid (in Russian). Trans. Kharkov Math. Soc.4, 3–7 (1893)
Chaplygin, S.A.: A new particular solution for the problem of motion of a rigid body in fluid (in Russian). Proc. of Physical Section of the Russian Imper. Soc. of Naturalists11, 101–110 (1902)
Jacobi, C.G.J.: Vorlesungen über Dynamik, Königsberg, 1866
Novikov, S.P.: A periodical problem for the Korteweg-de Vries equation. Funct. Anal. Appl.8, 54–66 (1974)
Dubrovin, B.A., Matveev, V.B., Novikov, S.P.: Nonlinear equations of the Korteweg-de Vries type, finite-zone linear operators and abelian manifolds. Usp. Mat. Nauk31, 55–136 (1976)
Dubrovin, B.A.: Completely integrable Hamiltonian systems related to matrix operators, and abelian manifolds. Funct. Anal. Appl.11, 4, 28-41 (1977)
Manakov, S.V.: A remark on integration of Euler dynamical equations forn-dimensional rigid body. Funct. Anal. Appl.10, 93–94 (1976)
Adler, M., van Moerbeke, P.: Completely integrable systems, Euclidean Lie algebras, and curves. Adv. Math.38, 267–317 (1980)
Adler, M., van Moerbeke, P.: Linearization of Hamiltonian systems, Jacobi varieties, and representation theory. Adv. Math.38, 318–379 (1980)
Perelomov, A.M.: A few comments on integrability of equations of motion of rigid body in a fluid. Funct. Anal. Appl.15, 83–86 (1981)
Haine, L.: Geodesic flow on SO (4) and abelian surfaces. Math. Ann.263, 435–472 (1983)
Arnold, V.I.: Mathematical methods of classical mechanics. Moscow: Nauka 1974
Novikov, S.P., Shmeltser, I.: Periodical solutions of the Kirchhoff equations for free motion of a rigid body in fluid, and the extended Lyusternik-Schnirelman-Morse theory. I. Funct. Anal. Appl.15, 54–66 (1981)
Baker, H.F.: Note on the foregoing paper “Commutative ordinary differential operators. J. L. Burchnall and T. W. Chaundy. Proc. Royal Soc. London A18, 584–593 (1928)
Akhiezer, N.I.: Continual analog of orthogonal polynomials in a system of intervals. Dokl. Akad. Nauk SSSR141, 2, 263–266 (1961)
Dubrovin, B.A.: Theta-functions and nonlinear equations. Usp. Mat. Nauk36, 11–81 (1981)
Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978
Author information
Authors and Affiliations
Additional information
Communicated by Ya. G. Sinai
Rights and permissions
About this article
Cite this article
Bogoyavlensky, O.I. New integrable problem of classical mechanics. Commun.Math. Phys. 94, 255–269 (1984). https://doi.org/10.1007/BF01209304
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01209304