Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

New integrable problem of classical mechanics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Complete integrability in Liouville's sense is proven for rotation of an arbitrary rigid body with a fixed point in a Newtonian field with an arbitrary homogeneous quadratic potential. A consequences is the complete integrability of rotation of a rigid body with fixed center of mass in the field of arbitrary sufficiently remote objects (in the second approximation). Explicit formulae are obtained expressing angular velocities of the rigid body in terms of θ-functions for Riemannian surfaces. Integrable cases are found for rotation of a rigid body in nonlinear Newtonian potential fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Euler, L.: Decouverte d'une nouveau principle de mechanique. Memories de l'Acad. des Sci. de Berlin14, 154–193 (1758)

    Google Scholar 

  2. Lagrange, J.: Mechanique analytique. Paris: Gauthier-Villars 1888

    Google Scholar 

  3. Kowalewski, S.: Sur le probleme della rotation d'un corps solide autour d'un point fixe. Acta Math.12, 177–232 (1889)

    Google Scholar 

  4. Brun, F.: Rotation kring fix punkt. Öfversigt at Kongl. Svenska Vetenskaps Akademies Förhadlingar, Stockholm7, 455–468 (1893)

    Google Scholar 

  5. Brun, F.: Rotation kring fix punkt II, III. Ark. Mat. Ast. Fys.4, 4, 1–4 (1907);6, 5, 1–10 (1909)

    Google Scholar 

  6. Goryachev, D.I.: Some general integrals in the problem of dynamics of a rigid body (in Russian). Warsaw: Warsaw Educational District Printery 1910

    Google Scholar 

  7. Clebsch, A.: Über die Bewegung eines Körpers in einer Flüssigkeit. Math. Ann.3, 238–262 (1871)

    Google Scholar 

  8. Steklov, V.A.: On motion of a rigid body in fluid (in Russian). Kharkov: Darre Printing House 1893

    Google Scholar 

  9. Lyapunov, A.M.: A new case of integrability for differential equations describing motion of a rigid body in fluid (in Russian). Trans. Kharkov Math. Soc.4, 3–7 (1893)

    Google Scholar 

  10. Chaplygin, S.A.: A new particular solution for the problem of motion of a rigid body in fluid (in Russian). Proc. of Physical Section of the Russian Imper. Soc. of Naturalists11, 101–110 (1902)

    Google Scholar 

  11. Jacobi, C.G.J.: Vorlesungen über Dynamik, Königsberg, 1866

  12. Novikov, S.P.: A periodical problem for the Korteweg-de Vries equation. Funct. Anal. Appl.8, 54–66 (1974)

    Google Scholar 

  13. Dubrovin, B.A., Matveev, V.B., Novikov, S.P.: Nonlinear equations of the Korteweg-de Vries type, finite-zone linear operators and abelian manifolds. Usp. Mat. Nauk31, 55–136 (1976)

    Google Scholar 

  14. Dubrovin, B.A.: Completely integrable Hamiltonian systems related to matrix operators, and abelian manifolds. Funct. Anal. Appl.11, 4, 28-41 (1977)

    Google Scholar 

  15. Manakov, S.V.: A remark on integration of Euler dynamical equations forn-dimensional rigid body. Funct. Anal. Appl.10, 93–94 (1976)

    Google Scholar 

  16. Adler, M., van Moerbeke, P.: Completely integrable systems, Euclidean Lie algebras, and curves. Adv. Math.38, 267–317 (1980)

    Google Scholar 

  17. Adler, M., van Moerbeke, P.: Linearization of Hamiltonian systems, Jacobi varieties, and representation theory. Adv. Math.38, 318–379 (1980)

    Google Scholar 

  18. Perelomov, A.M.: A few comments on integrability of equations of motion of rigid body in a fluid. Funct. Anal. Appl.15, 83–86 (1981)

    Google Scholar 

  19. Haine, L.: Geodesic flow on SO (4) and abelian surfaces. Math. Ann.263, 435–472 (1983)

    Google Scholar 

  20. Arnold, V.I.: Mathematical methods of classical mechanics. Moscow: Nauka 1974

    Google Scholar 

  21. Novikov, S.P., Shmeltser, I.: Periodical solutions of the Kirchhoff equations for free motion of a rigid body in fluid, and the extended Lyusternik-Schnirelman-Morse theory. I. Funct. Anal. Appl.15, 54–66 (1981)

    Google Scholar 

  22. Baker, H.F.: Note on the foregoing paper “Commutative ordinary differential operators. J. L. Burchnall and T. W. Chaundy. Proc. Royal Soc. London A18, 584–593 (1928)

    Google Scholar 

  23. Akhiezer, N.I.: Continual analog of orthogonal polynomials in a system of intervals. Dokl. Akad. Nauk SSSR141, 2, 263–266 (1961)

    Google Scholar 

  24. Dubrovin, B.A.: Theta-functions and nonlinear equations. Usp. Mat. Nauk36, 11–81 (1981)

    Google Scholar 

  25. Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Ya. G. Sinai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogoyavlensky, O.I. New integrable problem of classical mechanics. Commun.Math. Phys. 94, 255–269 (1984). https://doi.org/10.1007/BF01209304

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01209304

Keywords