Abstract
The main result of this paper is a theorem on the trajectory equivalence of phase flows on isoenergetic surfaces with a positive energy level in the Kepler problem and perturbed kepler problem. The following two facts are crucial for proving it: firstly, an isomorphism of the phase flow on an isoenergetic surface in the Kepler problem and the geodesic flow in a constant curvature space. The isomorphism is studied in detail. In particular, all the integrals of the Kepler problem are obtained proceeding from the group-theory considerations. The second fact is a generalization of the theorem on structural stability of Anosov flows onto non-compact manifolds.
Similar content being viewed by others
References
Алексеев, В. М.: 1972,Квазuслучаŭные колебанuя u качесмвенные воnросы небесноŭ механuкu, 9-я летняя мат. школа, киев стр. 212–341.
Арнольд, В. И.: 1974,Мамемамические мемо∂ы классической механики, ‘Наука’, М.
Осипов, В. С.: 1972, ‘Геометрическая интерпретация задачи Кеплера’,УМН,27,N 2, стр. 161.
Осипов, В. С.: 1976, ‘Структурная устойчивость некомпактных потоков Аносова и гиперболические движения в задаче Кеплера’,ДАН СССР 230,N 4, стр. 777–780.
Kobayashi, S. and Nomizu, K.: 1963,Foundations of Differential Geometry, Vol. 1, Interscience Publishers, N.Y.
Lang, S.: 1962,Introduction to Differentiable Manifold, London.
Moser, J.: 1970,Comm. Pure Appl. Math. 23, 609–636.
Smale, S.: 1970,Inv. Math. 10, 305–331.
Wintner, A.: 1941,The Analytical Foundations of Celestial Mechanics, Princeton University Press, Princeton.
Young, L. C.: 1969,Lectures on the Calculus of Variations and Optimal Control Theory, W. B. Saunders Company, Philadelphia-London-Toronto.
Györgyi, G.: 1968,Nuovo Cim. 53A, 717–736.
Belbruno, E. A.: 1977,Celes. Mech. 15, 467–476.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Osipov, Y.S. The Kepler problem and geodesic flows in spaces of constant curvature. Celestial Mechanics 16, 191–208 (1977). https://doi.org/10.1007/BF01228600
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01228600