Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Shape preservation criteria and optimal soft morphological filtering

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

New criteria for shape preservation are presented. These criteria are applied in optimizing soft morphological filters. The filters are optimized by simulated annealing and genetic algorithms which are briefly reviewed. Situations, where this kind of criteria give better results compared to the traditional MAE and MSE criteria, are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Aarts and J. Korst,Simulated Annealing and Bolzmann Machines, Wiley and Sons, New York, 1989.

    Google Scholar 

  2. A. Asano, K. Matsumura, T. Shudoh, K. Itoh, Y. Ichioka, and S. Yokozeki, ”Design of morphological filters by learning,” inProc. IEEE Winter Workshop on Nonlinear Digital Signal Processing, pp. 6.1.6.1 – 6.1.6.4, Tampere, Finland, January 1993.

  3. J. E. Baker, ”Adaptive Selection Methods for Genetic Algorithms,”, inProc. of the First International Conference on Gen. Algorithms, Lawrence Erlbaum Associates, Hillsdale, NJ, 1985.

    Google Scholar 

  4. J. Davidson, ”Simulated annealing and morphology neural networks,” inProc. of SPIE Symp. on Image Algebra and Morphological Image Processing III, San Diego, USA, pp. 119–127, June 1992.

  5. K. A. DeJong,An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Doctoral Dissertation, Univ. of Michigan, 1975.

  6. R. C. Hardie and K. E. Barner, ”Rank Conditioned Rank Selection Filters for Signal Restoration,” inIEEE Transactions on Image Processing, vol. 3, no. 2, pp. 192–206, March 1994.

    Google Scholar 

  7. J. Holland,Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, 1975.

    Google Scholar 

  8. H. Huttunen, P. Kuosmanen, L. Koskinen, and J. Astola, ”Optimization of soft morphological filters by genetic algorithms,” inProc. of Image Algebra and Morphological Image Processing V, SPIE Proceedings, San Diego, USA, pp. 13–24, July 1994.

  9. A. Katz and P. Thrift, ”Generating Image Filters for Target Recognition by Genetic Learning”, inIEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 9, pp. 906–910, September 1994.

    Google Scholar 

  10. S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi, ”Optimization by simulated annealing,” inScience 220, pp. 671–680, 1983.

    Google Scholar 

  11. P. Koivisto and P. Kuosmanen, ”Design of soft morphological filters by learning,” inProc. of Nonlinear Image Processing V, SPIE Proceedings, San Jose, USA, pp. 112–123, February 1994.

  12. P. Koivisto, H. Huttunen and P. Kuosmanen, ”Optimal Compositions of Soft Morphological Filters,” inProc. of Nonlinear Image Processing VI, SPIE Proceedings, San Jose, USA, pp. 16–27, February 1995.

  13. L. Koskinen, J. Astola and Y. Neuvo, ”Soft morphological filters,” inProceedings of SPIE Symp. on Image Algebra and Morphological Image Processing II, SPIE Proceedings, San Diego, USA, pp. 262, 270, July 1991.

  14. L. Koskinen and J. Astola, ”Soft morphological filters: A robust morphological filtering method,” inJournal of Electronic Imaging 3, pp. 60–70, January 1994.

    Google Scholar 

  15. P. Kuosmanen, L. Koskinen and J. Astola, ”An adaptive morphological filtering method,” inProc. EUSIPCO -92, Brussels, Belgium, pp. 1089–1092, August 1992.

  16. P. Kuosmanen and J. Astola, ”Soft Morphological Filters”, to appear inJournal of Mathematical Imaging and Vision, 1995.

  17. P. Kuosmanen, P. Koivisto, H. Huttunen, and J. Astola, ”Optimal Soft Morphological Filtering under Shape Preservation Criteria”, in Proc. of Image Algebra and Morphological Image Processing V, SPIE Proceedings, San Diego, USA, pp. 25–36 July, 1994.

  18. P. J. M. van Laarhoven and E. H. L. Aarts,Simulated annealing: Theory and applications, D. Reidel Publishing Company, Dordrecht, 1987.

    Google Scholar 

  19. C. Lee, ”Simulated annealing applied to acoustic signal tracking,” inProc. of SPIE Symp. on Nonlinear Image Processing III, San Jose, USA, pp. 344–355, February 1992.

  20. P. Matheron,Random Sets and Integral Geometry, Wiley and Sons, New York, 1975.

    Google Scholar 

  21. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, ”Equation of state calculations by fast computing machines,” inJ. of Chem. Physics 21, pp. 1087–1092, 1953.

    Google Scholar 

  22. S. Serra,Image Analysis and Mathematical Morphology, London: Academic Press, 1988.

    Google Scholar 

  23. D. Whitley, ”The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best”, inProc. of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, Los Altos, CA, 1989.

    Google Scholar 

  24. P. T. Yu and E. Coyle, ”On the existence and design of the best stack filter based on associative memory,”IEEE Trans. on Circuits and Systems, vol 39, no. 3, March 1992.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuosmanen, P., Koivisto, P., Huttunen, H. et al. Shape preservation criteria and optimal soft morphological filtering. J Math Imaging Vis 5, 319–335 (1995). https://doi.org/10.1007/BF01250287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01250287

Keywords