Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computing Frobenius maps and factoring polynomials

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

A new probabilistic algorithm for factoring univariate polynomials over finite fields is presented. To factor a polynomial of degreen overF q , the number of arithmetic operations inF q isO((n 2+nlogq). (logn)2 loglogn). The main technical innovation is a new way to compute Frobenius and trace maps in the ring of polynomials modulo the polynomial to be factored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. V. Aho, J. E. Hopcroft, and J. D. Ullman.The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.

  • A. Arwin. Über Kongruenzen von dem fünften und höheren Graden nach einem Primzahlmodulus.Arkiv för matematik, astronomi o. fysik 14 (1918), 1–46.

    Google Scholar 

  • L. Babai, E. M. Luks, and Á. Seress. Fast management of permutation groups. In29th Annual Symposium on Foundations of Computer Science, 272–282, 1988.

  • W. Baur and V. Strassen. The complexity of computing partial derivatives.Theoret. Comput. Sci. 22 (1983), 317–330.

    Google Scholar 

  • M. Ben-Or. Probabilistic algorithms in finite fields. In22nd Annual Symposium on Foundations of Computer Science, 394–398, 1981.

  • E. R. Berlekamp.Algebraic Coding Theory. McGraw-Hill, 1968.

  • E. R. Berlekamp. Factoring polynomials over large finite fields.Math. Comp. 24 (1970), 713–735.

    Google Scholar 

  • A. Borodin and I. Munro.The Computational Complexity of Algebraic and Numeric Problems. American Elsevier, 1975.

  • R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series.J. Assoc. Comput. Mach. 25 (1978), 581–595.

    Google Scholar 

  • J. Buchmann. Complexity of algorithms in algebraic number theory. InNumber Theory. Proc. First Conf. Canadian Number Theory Assoc., 37–53. Walter de Gruyter, 1990.

  • M. C. R. Butler. On the reducibility of polynomials over a finite field.Quart. J. Math., Oxford Ser. (2)5 (1954), 102–107.

    Google Scholar 

  • P. Camion. Improving an algorithm for factoring polynomials over a finite field and constructing large irreducible polynomials.IEEE Trans. Inform. Theory IT-29 (1983), 378–385.

    Google Scholar 

  • J. F. Canny, E. Kaltofen, and L. Yagati. Solving systems of non-linear polynomial equations faster. InProc. Int. Symp. on Symbolic and Algebraic Comp., 121–128, 1989.

  • D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras.Acta. Inf. 28 (1991), 693–701.

    Google Scholar 

  • D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over finite fields.Math. Comp. 36 (1981), 587–592.

    Google Scholar 

  • D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.J. Symb. Comp. 9 (1990), 23–52.

    Google Scholar 

  • T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to algorithms. MIT Press, 1989.

  • J. von zur Gathen. Irreducibility of multivariate polynomials.J. Computer System Sciences 31 (1985), 225–264.

    Google Scholar 

  • J. von zur Gathen. Factoring polynomials and primitive elements for special primes.Theoret. Comput. Sci. 52, (1987), 77–89.

    Google Scholar 

  • J. von zur Gathen and M. Giesbrecht. Constructing normal bases in finite fields.J. Symb. Comp. 10, (1990), 547–570.

    Google Scholar 

  • J. von zur Gathen and G. Seroussi. Boolean circuits versus arithmetic circuits.Inform. and Comput. 91, (1991), 142–154.

    Google Scholar 

  • G. H. Hardy and E. M. Wright.An Introduction to the Theory of Numbers. Oxford University Press, fifth edition, 1984.

  • E. Kaltofen. Polynomial factorization 1982–1986. In Computers in Mathematics,ed. D. V. Chudnovsky, R. D. Jenks, Lecture Notes in Pure and Applied Mathematics, vol. 125, 285–309, 1990.

  • M. Kaminski, D. G. Kirkpatrick, and N. H. Bshouty. Addition requirements for matrix and transposed matrix products.J. of Algorithms 9 (1988), 354–364.

    Google Scholar 

  • D. E. Knuth.The Art of Computer Programming, vol. 2. Addison-Wesley, second edition, 1981.

  • R. Lidl and H. Niederreiter.Finite Fields. Addison-Wesley, 1983.

  • R. J. McEliece. Factorization of polynomials over finite fields.Math. Comp. 23 (1969), 861–867.

    Google Scholar 

  • A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Subgroup refinement algorithms for root finding inGF(q).SIAM J. Comput. 21 (1992), 228–239.

    Google Scholar 

  • M. Mignotte and C. Schnorr. Calcul des racinesd-ièmes dans un corps fini.C. R. Acad. Sci. Paris 290 (1988), 205–206.

    Google Scholar 

  • R. T. Moenck. On the efficiency of algorithms for polynomial factoring.Math. Comp. 31 (1977), 235–250.

    Google Scholar 

  • A. M. Odlyzko. Discrete logarithms in finite fields and their cryptographic significance. InAdvances in Cryptology, Proceedings of Eurocrypt 84, 224–314. Springer-Verlag, 1985.

  • M. O. Rabin. Probabilistic algorithms in finite fields.SIAM J. Comput. 9 (1980), 273–280.

    Google Scholar 

  • A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2.Acta Inf. 7 (1977), 395–398.

    Google Scholar 

  • A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen.Computing 7 (1971), 281–292.

    Google Scholar 

  • V. Shoup. On the deterministic complexity of factoring polynomials over finite fields.Inform. Process. Lett. 33 (1990), 261–267.

    Google Scholar 

  • V. Shoup. A fast deterministic algorithm for factoring polynomials over finite fields of small characteristic. InProc. Int. Symp. on Symbolic and Algebraic Comp., 14–21, 1991.

  • V. Shoup. Fast construction of irreducible polynomials over finite fields. InProc. IEEE Symp. on Discrete Algorithms, Austin, TX, 1993.

  • V. Shoup and R. Smolensky. An algorithm for modular composition. Preprint, 1992.

  • I. E. Shparlinski.Computational problems in finite fields. Kluwer, 1992. To appear.

  • V. Strassen. The computational complexity of continued fractions.SIAM J. Comput. 12 (1983), 1–27.

    Google Scholar 

  • A. Thiong ly. A deterministic algorithm for factorizing polynomials over extensionsGF(p m) ofGF(p), p a small prime.J. of Information and Optimization Sciences 10 (1989), 337–344.

    Google Scholar 

  • D. Y. Y. Yun. On square-free decomposition algorithms. InProc. ACM Symp. Symbolic and Algebraic Comp., 26–35, 1976.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von zur Gathen, J., Shoup, V. Computing Frobenius maps and factoring polynomials. Comput Complexity 2, 187–224 (1992). https://doi.org/10.1007/BF01272074

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01272074

Subject classifications