Abstract
A new probabilistic algorithm for factoring univariate polynomials over finite fields is presented. To factor a polynomial of degreen overF q , the number of arithmetic operations inF q isO((n 2+nlogq). (logn)2 loglogn). The main technical innovation is a new way to compute Frobenius and trace maps in the ring of polynomials modulo the polynomial to be factored.
Similar content being viewed by others
References
A. V. Aho, J. E. Hopcroft, and J. D. Ullman.The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.
A. Arwin. Über Kongruenzen von dem fünften und höheren Graden nach einem Primzahlmodulus.Arkiv för matematik, astronomi o. fysik 14 (1918), 1–46.
L. Babai, E. M. Luks, and Á. Seress. Fast management of permutation groups. In29th Annual Symposium on Foundations of Computer Science, 272–282, 1988.
W. Baur and V. Strassen. The complexity of computing partial derivatives.Theoret. Comput. Sci. 22 (1983), 317–330.
M. Ben-Or. Probabilistic algorithms in finite fields. In22nd Annual Symposium on Foundations of Computer Science, 394–398, 1981.
E. R. Berlekamp.Algebraic Coding Theory. McGraw-Hill, 1968.
E. R. Berlekamp. Factoring polynomials over large finite fields.Math. Comp. 24 (1970), 713–735.
A. Borodin and I. Munro.The Computational Complexity of Algebraic and Numeric Problems. American Elsevier, 1975.
R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series.J. Assoc. Comput. Mach. 25 (1978), 581–595.
J. Buchmann. Complexity of algorithms in algebraic number theory. InNumber Theory. Proc. First Conf. Canadian Number Theory Assoc., 37–53. Walter de Gruyter, 1990.
M. C. R. Butler. On the reducibility of polynomials over a finite field.Quart. J. Math., Oxford Ser. (2)5 (1954), 102–107.
P. Camion. Improving an algorithm for factoring polynomials over a finite field and constructing large irreducible polynomials.IEEE Trans. Inform. Theory IT-29 (1983), 378–385.
J. F. Canny, E. Kaltofen, and L. Yagati. Solving systems of non-linear polynomial equations faster. InProc. Int. Symp. on Symbolic and Algebraic Comp., 121–128, 1989.
D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras.Acta. Inf. 28 (1991), 693–701.
D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over finite fields.Math. Comp. 36 (1981), 587–592.
D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.J. Symb. Comp. 9 (1990), 23–52.
T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to algorithms. MIT Press, 1989.
J. von zur Gathen. Irreducibility of multivariate polynomials.J. Computer System Sciences 31 (1985), 225–264.
J. von zur Gathen. Factoring polynomials and primitive elements for special primes.Theoret. Comput. Sci. 52, (1987), 77–89.
J. von zur Gathen and M. Giesbrecht. Constructing normal bases in finite fields.J. Symb. Comp. 10, (1990), 547–570.
J. von zur Gathen and G. Seroussi. Boolean circuits versus arithmetic circuits.Inform. and Comput. 91, (1991), 142–154.
G. H. Hardy and E. M. Wright.An Introduction to the Theory of Numbers. Oxford University Press, fifth edition, 1984.
E. Kaltofen. Polynomial factorization 1982–1986. In Computers in Mathematics,ed. D. V. Chudnovsky, R. D. Jenks, Lecture Notes in Pure and Applied Mathematics, vol. 125, 285–309, 1990.
M. Kaminski, D. G. Kirkpatrick, and N. H. Bshouty. Addition requirements for matrix and transposed matrix products.J. of Algorithms 9 (1988), 354–364.
D. E. Knuth.The Art of Computer Programming, vol. 2. Addison-Wesley, second edition, 1981.
R. Lidl and H. Niederreiter.Finite Fields. Addison-Wesley, 1983.
R. J. McEliece. Factorization of polynomials over finite fields.Math. Comp. 23 (1969), 861–867.
A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Subgroup refinement algorithms for root finding inGF(q).SIAM J. Comput. 21 (1992), 228–239.
M. Mignotte and C. Schnorr. Calcul des racinesd-ièmes dans un corps fini.C. R. Acad. Sci. Paris 290 (1988), 205–206.
R. T. Moenck. On the efficiency of algorithms for polynomial factoring.Math. Comp. 31 (1977), 235–250.
A. M. Odlyzko. Discrete logarithms in finite fields and their cryptographic significance. InAdvances in Cryptology, Proceedings of Eurocrypt 84, 224–314. Springer-Verlag, 1985.
M. O. Rabin. Probabilistic algorithms in finite fields.SIAM J. Comput. 9 (1980), 273–280.
A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2.Acta Inf. 7 (1977), 395–398.
A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen.Computing 7 (1971), 281–292.
V. Shoup. On the deterministic complexity of factoring polynomials over finite fields.Inform. Process. Lett. 33 (1990), 261–267.
V. Shoup. A fast deterministic algorithm for factoring polynomials over finite fields of small characteristic. InProc. Int. Symp. on Symbolic and Algebraic Comp., 14–21, 1991.
V. Shoup. Fast construction of irreducible polynomials over finite fields. InProc. IEEE Symp. on Discrete Algorithms, Austin, TX, 1993.
V. Shoup and R. Smolensky. An algorithm for modular composition. Preprint, 1992.
I. E. Shparlinski.Computational problems in finite fields. Kluwer, 1992. To appear.
V. Strassen. The computational complexity of continued fractions.SIAM J. Comput. 12 (1983), 1–27.
A. Thiong ly. A deterministic algorithm for factorizing polynomials over extensionsGF(p m) ofGF(p), p a small prime.J. of Information and Optimization Sciences 10 (1989), 337–344.
D. Y. Y. Yun. On square-free decomposition algorithms. InProc. ACM Symp. Symbolic and Algebraic Comp., 26–35, 1976.