Abstract
In this paper we present a method to computeall the irreducible and primitive polynomials of degreem over the finite fieldGF(q). Our method finds each new irreducible or primitive polynomial with a complexity ofO(m) arithmetic operations inGF(q). The best previously known methods [3], [10] use the Berlekamp-Massey algorithm [7] and they have a complexityO(m 2). We reach mis improvement taking into account a systolic implementation [2] of the extended Euclidean algorithm instead of using the Berlekamp-Massey algorithm.
Similar content being viewed by others
References
E. R. Berlekamp, G. Seroussi, P. Tong, Hypersystolic Reed-Solomon Decoder, U.S. Patent Application, 1990.
R. P. Brent, H. T. Kung, Systolic VLSI arrays for polynomial GCD computation,IEEE Trans. Comput.,33, 731–736, Aug. 1984.
A. Di Porto, F. Guida, E. Montolivo, Metodi di ricerca di polinomi irriducibili e di polinomi primitivi con coefficienti in campi finiti, inSecondo Simposio su Stato e Prospettive della Ricerca Crittografica in Italia (SPRCI '89), pp. 80–99, Fondazione Ugo Bordoni, Roma, 1989.
H. W. Lenstra Jr., Finding isomorphisms between finite fields,Math. Comp.,56, 329–347, 1991.
R. Lidl, H. Niederreiter,Introduction to Finite Fields and their Applications, Cambridge University Press, Cambridge, 1986.
P. J. MacWilliams, N. J. A. Sloane,The Theory of Error Correcting Codes, North-Holland, Amsterdam, 1983.
J. L. Massey, Shift-register synthesis and BCH decoding,IEEE Trans. Inform. Theory,56, 122–127, Jan. 1969.
J. L. Massey, J. K. Omura, Computational Method and Apparatus for Finite Field Arithmetic, U.S. Patent Application, 1981.
M. J. Quinn,Designing Efficient Algorithms for Parallel Computers, McGraw-Hill, New York, 1987.
J. Rifá, J. Borrell,Improving the Time Complexity of the Computation of Irreducible and Primitive Polynomials in Finite Fields, Lecture Notes in Computer Science, Vol. 359, pp. 352–359, Springer-Verlag, Berlin, 1991.
Y. Sugiyama, M. Kasahara, S. Hirasawa, T. Hamekawa, A method for solving key equation for decoding Goppa codes,Inform and Control.,27, 87–99, 1975.
J. Von Zur Gathen, M. Giesbrecht, Constructing normal bases in finite fields,J. Symbolic Comput.,10, 547–570, 1990.
C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura, I. S. Reed, VLSI architectures for computing multiplications and inverses inGF(2m),IEEE Trans. Comput.,34, 709–717, Aug. 1985.
Author information
Authors and Affiliations
Additional information
This work was supported in part by Spanish Grant CICYT TIC91-0472.
Rights and permissions
About this article
Cite this article
Rifà, J., Borrell, J. A fast algorithm to compute irreducible and primitive polynomials in finite fields. Math. Systems Theory 28, 13–20 (1995). https://doi.org/10.1007/BF01294593
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF01294593