Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

The automorphism groups of the Delsarte-Goethals codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We determine the automorphism groups of the Delsarte-Goethals codesDG(m, d) (m=2t+2≥6, 2≤d≤t). The groups that we obtain are the same as those of the Kerdock codesK(m) of the same length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, R.D., Van Lint, J.H., and Wilson, R.M. 1983 On the Preparata and Goethals codes.IEEE Trans. Inform. Theory. IT. 29: 342–345, May.

    Google Scholar 

  2. Berlekamp, E.R. 1971. Coding theory and the Mathieu groups.Inform. Contr. 18: 40–64.

    Google Scholar 

  3. Camion, P. 1979. Codes de Reed-Muller, codes de Kerdock et de Preparata. Thèse, publication du LITP—Institut Blaise Pascal, Université Paris 6. 4 place Jussien, 75005 Paris, France, n° 90.59.

  4. Carlet, C. 1989. Le groupe d'automorphimes du code de Kerdock.C.R. Acad. Sci. Paris, t. 309. Série I 343–345.

    Google Scholar 

  5. Carlet, C. 1991. The automorphism groups of the Kerdock codes.J. of Information and Optimization Sciences. 12: no 3.

  6. Charpin, P. 1987. Thèse, Codes cycliques étendus invariants sous le groupe affine. LITP. Université Paris 6, 4 place Jussien, 75005 Paris, France

  7. Delsarte, P. and Goethals, J.-M. 1975. Alternating bilinear forms over GF(q).J. Combin. Theory. 19 A: 26–50 [15, 21, A].

    Google Scholar 

  8. Goethals, J.-M. 1976. Nonlinear codes defined by quadratic forms over GF(2).Information and Control. 31: 43–74.

    Google Scholar 

  9. Hergert, F.B. 1990. On the Delsarte-Goethals codes and their formal duals.Discrete Mathematics. 83: 249–263, amsterdam: North Holland.

    Google Scholar 

  10. Kantor, W.M. 1982. Spreads, translation planes, and Kerdock sets I, II.SIAM J. Alg. Disc. Math. 3: 151–165 and 308–318.

    Google Scholar 

  11. Kantor, W.M. 1983. On the inequivalence of generalized Preparata codes.IEEE Trans. Inform. Theory. IT. 29: 345–348.

    Google Scholar 

  12. Kerdock, A.M. 1972. A class of low-rate nonlinear codes.Information and Control. 20: 182–187.

    Google Scholar 

  13. MacWilliams, F.J. and Sloane, N.J.A. 1977.The theory of error-correcting codes. Amsterdam: North Holland.

    Google Scholar 

  14. Preparata, F.P. 1968. A class of optimum nonlinear double-error correcting codes.Information and Control. 13: 378–400.

    Google Scholar 

  15. Van Lint, J.H. 1983. Kerdock codes and Preparata codes. Congressus Numerantium. 39: 25–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Jungnickel

LAMIFA Université de Picardie, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlet, C. The automorphism groups of the Delsarte-Goethals codes. Des Codes Crypt 3, 237–249 (1993). https://doi.org/10.1007/BF01388485

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01388485

Keywords