Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Infinite root systems, representations of graphs and invariant theory

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Andreev, E.M., Vinberg, E.B., Elashvili, A.G.: Orbits of greatest dimension of semisimple linear Lie groups, Functional Anal. Appl.1, 257–261 (1967)

    Google Scholar 

  2. Bernstein, I.N., Gelfand, I.M., Ponomarev, V.A.: Coxeter functors and Gabriel's theorem, Russian Math. Surveys28, 17–32 (1973)

    Google Scholar 

  3. Brenner, S.: Quivers with commutativity conditions and some phenomenology of forms, Lecture Notes in Math.,488, 29–53 (1975)

    Google Scholar 

  4. De Concini, C., Procesi, C.: Characteristic free approach to Invariant theory, Advances in Math.21, 330–354 (1976)

    Google Scholar 

  5. Dlab, V., Ringel, C.M.: Indecomposable representations of graphs and algebras, Memoirs of Amer. Math. Soc. 6 no.173, 1–57 (1976)

    Google Scholar 

  6. Duflo, M.: Parametrisation of the set of regular orbits of the coadjoint representation of a Lie group, preprint (1978)

  7. Elashvili, A.G.: Stabilizers of points in general position for irreducible linear Lie groups, Functional Anal. Appl.6, 165–178 (1972)

    Google Scholar 

  8. Gabriel, P.: Unzerlegbare Darstellungen I., Man. Math.6, 71–103 (1972)

    Google Scholar 

  9. Gabriel, P.: Indecomposable representations II, Symposia Math. Inst. Naz. Alta Mat.,XI, 81–104 (1973)

    Google Scholar 

  10. Hsiang, W.C., Hsiang, W.Y.: Differentiable action of compact connected classical groups II, Ann. of Math.92, 189–223 (1970)

    Google Scholar 

  11. Kac, V.G.: Simple irreducible graded Lie algebras of finite growth, Math. USSR Izvestija2, 1271–1311 (1968)

    Google Scholar 

  12. Kac, V.G.: Infinite dimensional Lie algebras and the Dedekind η-function. Functional Anal. Appl.8, 68–70 (1974)

    Google Scholar 

  13. Kac, V.G.: Conserning the question of describing the orbit space of a linear algebraic group, Uspechi Mat. Nauk30, 173–174 (1975) (in Russian)

    Google Scholar 

  14. Kac, V.G., Popov, V.L., Vinberg, E.B.: Sur les groupes linéares algébrique dont l'algebre des invariants est libre. C.R. Acad. Sci, Paris283, 865–878 (1976)

    Google Scholar 

  15. Kac, V.G.: Infinite-dimensional algebras, Dedekind's η-function, classical Möbius function and the very strange formula, Advances in Math.,30, 85–136 (1978)

    Google Scholar 

  16. Gatti, V., Viniberghi, E.: Spinors of 13-dimensional space, Advances in Math.30, 137–155 (1978)

    Google Scholar 

  17. Luna, D.: Adhérences d'orbite et invariants. Invent. Math.29, 231–238 (1975)

    Google Scholar 

  18. Moody, R.V.: Root systems of hyperbolic type, preprint

  19. Nazarova, L.A.: Representations of quivers of infinite type, Math USSR, Izvestija, Ser. Mat.7, 752–791 (1973)

    Google Scholar 

  20. Pyasetskii, V.: Linear Lie groups acting with finitely many orbits, Functional Anal. Appl.9, 351–353 (1975)

    Google Scholar 

  21. Richardson, R.W.: Deformations of Lie subgroups and the variation of isotrophy subgroups. Acta Math,129, 35–73 (1972)

    Google Scholar 

  22. Ringel, C.M.: Representations ofK-species and bimodules. J. of Algebra,41, 269–302 (1976)

    Google Scholar 

  23. Rosenlicht: A remark on quotient spaces, An. Acad. Brasil cienc.35, 487–489 (1963)

    Google Scholar 

  24. Sato, M., Kimura, T.: A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J.65, 1–155 (1977)

    Google Scholar 

  25. Vinberg, E.B.: Discrete linear groups generated by reflections, Math. USSR, Izvestija, Ser. Mat.5, 1083–1119 (1971)

    Google Scholar 

  26. Kronecker, L.: Algebraishe Reduction der Schaaren bilinearer Formen, 763–776. Berlin: S.-B. Akad. 1890

    Google Scholar 

  27. Thrall, R., Chanler, J.: Ternary trilinear forms in the field of complex numbers, Duke Math. J.4, 678–690 (1938)

    Google Scholar 

  28. Thrall, R.: On projective equivalence of trilinear forms, Ann. Math.42, 469–485 (1941)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by NSF grant MCS 7609177

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kac, V.G. Infinite root systems, representations of graphs and invariant theory. Invent Math 56, 57–92 (1980). https://doi.org/10.1007/BF01403155

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01403155

Keywords