Abstract
We present a general method which enables us to prove the orbital stability of some standing waves in nonlinear Schrödinger equations. For example, we treat the cases of nonlinear Schrödinger equations arising in laser beams, of time-dependent Hartree equations ....
Similar content being viewed by others
References
Adams, R.A., Clarke, F.H.: Gross's logarithmic sobolev inequality: a simple proof (preprint)
Berestycki, H., Cazenave, T.: To appear
Berestycki, H., Lions, P.L.: Existence d'ondes solitaires dans des problèmes nonlinéaires du type Klein-Gordon. C. R. Paris287, 503–506 (1978);288, 395–398 (1979)
Berestycki, H., Lions, P.L.: Nonlinear scalar fields equations. Parts I and II. Arch. Rat. Mech. Anal. (to appear)
Berger, M.S.: On the existence and structure of stationary states for a nonlinear Klein-Gordon equation. J. Funct. Anal.9, 249–261 (1972)
Bialynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys.100, 62–93 (1976)
Cazenave, T.: Equations de Schrödinger non linéaires. Thèse de 3ème cycle Univ. P. et M. Curie, Paris (1978)
Cazenave, T.: Equations de Schrödinger non linéaires en dimension deux. Proc. R. Soc. Edin88, 327–346 (1979)
Cazenave, T.: Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal. T.M.A. (to appear)
Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. I. The Gauchy problem, general case. J. Funct. Anal.32, 1–32 (1979)
Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. III. Special theories in dimensions 1, 2, and 3. Ann. Inst. Henri Poincaré28, 287–316 (1978)
Ginibre, J., Velo, G.: Equation de Schrödinger non linéaire avec interaction non locale. C. R. Paris288, 683–685 (1979)
Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations with non local interaction. Math. Zeitschr. (to appear)
Glassey, R.T.: On the blowing-up of solutions to the Cauchy Problem for nonlinear Schrödinger equations. J. Math. Phys.18, 1794–1797 (1977)
Hartree, D.: The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. Proc. Camb. Philos. Soc.24, 89–132 (1968)
Kelley, P.L.: Self-focusing of optical beams. Phys. Rev. Lett.15, 1005–1008 (1965)
Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud. Appl. Math.57, 93–105 (1977)
Lieb, E.H., Simon, B.: The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys.53, 185–194 (1974)
Lions, P.L.: The Choquard equation and related equations. Nonlinear Anal. T.M.A.4, 1063–1073 (1980)
Lions, P.L.: Some remarks on Hartree equation. Nonlinear Anal. T.M.A.5, 1245–1256 (1981)
Lions, P.L.: Principe de concentration — compacité en calcul des variations. C. R. Paris294, 261–264 (1982)
Lions, P.L.: To appear
Lin, J.E., Strauss, W.: Decay and scattering of solutions of a nonlinear Schrödinger equation. J. Funct. Anal.30, 245–263 (1978)
MacLeod, K., Serrin, J.: Personal communication
Nehari, Z.: On a nonlinear differential equation arising in nuclear physics. Proc. R. Irish Acad.62, 117–135 (1963)
Pecher, H., Von Wahl, W.: Time dependent nonlinear Schrödinger equations. Manuscripta Mathematica (to appear)
Reeken, M.: Global theorem on bifurcation and its application to the Hartree equation of the Helium atom. J. Math. Phys.11, 2505–2512 (1970)
Ryder, G.: Boundary value problems for a class of nonlinear differential equations. Pac. J. Math.22, 477–503 (1967)
Slater, J.C.: A note on Hartree's method. Phys. Rev.35, 210–211 (1930)
Strauss, W.: Existence of solitary waves in higher dimensions. Commun. Math. Phys.55, 149–162 (1977)
Strauss, W.: The nonlinear Schrödinger equation. Proceedings of the Rio conference, August 1977
Stuart, C.A.: Existence theory for the Hartree equation. Arch. Rat. Mech. Anal.51, 60–69 (1973)
Stuart, C.A.: An example in nonlinear functional analysis: the Hartree equation. J. Math. Anal. Appl.49, 725–733 (1975)
Suydam, B.R.: Self-focusing of very powerful laser beams. U.S. Dept. of Commerce. N.B.S. Special Publication 387
Author information
Authors and Affiliations
Additional information
Communicated by B. Simon
Rights and permissions
About this article
Cite this article
Cazenave, T., Lions, P.L. Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun.Math. Phys. 85, 549–561 (1982). https://doi.org/10.1007/BF01403504
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01403504