Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Topological comparison of perfect shuffle and hypercube

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

Novel topological measures for static multiprocessor interconnection networks,disconnectivity, looseness, andcost-effectiveness, are developed. These and other measures are employed for a comparative analysis of such networks. The goal of this analysis is to predict network effectiveness, without resorting to execution benchmark techniques. In particular, we compare thehypercube andperfectshuffle-nearest-neighbor networks, and show that they are the best candidates for multiprocessor interconnections. We specifically find that the hypercube is capable of somewhat better performance than perfect-shuffle-nearest-neighbor, but the latter is significantly more cost-effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Hockney and C. R. Jesshope, Parallel Computers, Adam Hilger Ltd., Bristol (1980).

    Google Scholar 

  2. K. Hwang and F. A. Briggs, Computer Architecture and Parallel Processing, McGraw-Hill Book Co., New York (1984).

    Google Scholar 

  3. C. L. Seitz, Ensemble Architectures for VLSI-A Survey and Taxanomy,Proc. Conf. Adv. Res. in VLSI, Massachusetts Institute of Technology, pp. 130–135 (1982).

  4. J. T. Schwartz, Ultracomputers,ACM Trans. Prog. Lang. Sys.,2(4):484–521 (1980).

    Google Scholar 

  5. H. S. Stone, Parallel Processing with the Perfect Shuffle,IEEE Trans. on Computers, Vol. C-20, No. 2, pp. 153–161 (1971).

    Google Scholar 

  6. C. L. Seitz, The Cosmic Cube,Comm. ACM,28(1):22–33 (1985).

    Google Scholar 

  7. C. L. Seitz, Concurrent VLSI Architectures,IEEE Trans. on Computers,C-33 (12):1247–1265 (1984).

    Google Scholar 

  8. R. Ginosar, and D. Egozi, Algorithmic Comparison of Hypercubes and Perfect-Nearest-Neighbor Networks Technical Report, Dept. of Electrical Engineering, Technion, Haifa, Israel, (1987).

    Google Scholar 

  9. C. H. Ng, FIFO Buffering Transceiver: A Communication Chip Set for Multiprocessor Systems, MSc Thesis, Dept. of Computer Science, California Institute of Technology, Pasadena, California (1982).

    Google Scholar 

  10. Y. Rimoni, I. Zisman, R. Ginosar, and U. Weiser, Communication Element for the Versatile MultiComputer,Proc. 15th IEEE Israel Conf., pp. 2.1.2 (1987).

  11. R. J. Swan, S. H. Fuller, and D. P. Siewiorek, Cm*: A Modular Multimicroprocessor,Proc. AFIPS NCC, No. 46, pp. 637–644 (1977).

    Google Scholar 

  12. C. H. Sequin, and R. M. Fujimoto, X-Tree and Y-ComponentsVLSI Architecture, (eds.), B. Randell and P. C. Treleaven, pp. 471–480, Prentice-Hall, New Jersey (1983).

    Google Scholar 

  13. A. M. Despain, and D. A. Patterson, X-TREE: A Tree Structured Multiprocessor Computer Architecture,Proc. 5th An. Symp. Computer Architecture, pp. 144–151 (1978).

  14. Intel. Corp., iPSC Documentation (1985).

  15. Bolt Beranek and Newman Inc., Butterfly Parallel Processing Computer, Cambridge, Massachusetts (1986).

  16. G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton, V. A. Norton, and J. Weiss, The IBM Research Parallel Prototype (RP3): Introduction and Architecture,Proc. Int'l. Conf. on Parallel Processing, pp. 764–771 (1985).

  17. M. C. Sejnowski, E. T. Upchurch, R. N. Kapur, D. P. S. Charlu, and G. J. Lipovski, An Overview of the Texas Reconfigurable Array Computer (TRAC),Proc. AFIPS NCC, No. 49, pp. 631–641 (1980).

    Google Scholar 

  18. D. Gajski, D. Kuck, and D. Lawrie, CEDAR: A Large Scale Multiprocessor,ACM SIGARCH Computer Architecture News,11(1):7–11 (1983).

    Google Scholar 

  19. B. W. Arden and R. Cinosar, MP/C: A Multiprocessor/Computer Architecture,IEEE Trans. on Computers,C-31(5):455–473 (1982).

    Google Scholar 

  20. C. K. Baru and S. Y. W. Su, The Architecture of SM3: A Dynamically Partitionable Multicomputer System,IEEE Trans. on Computer,C-35(9):790–802 (1986).

    Google Scholar 

  21. P. Kermani, and L. Kleinrock, Virtual Cut-Through: A New Computer Communication Switching Technique,Computer Networks,3(4):267–286 (1979).

    Google Scholar 

  22. T. Y. Feng, A Survey of Interconnection Networks,IEEE Computer, pp. 12–27 (December 1981).

  23. F. P. Preparata and J. E. Vuillemin, The Cube-connected Cycles: A Versatile Network for Parallel Computation,Comm. ACM 24(6):300–309 (1981).

    Google Scholar 

  24. B. W. Arden and H. Lee, A Regular Network for Multicomputer System,IEEE Trans. on Computers,C-31(1):60–69 (1982).

    Google Scholar 

  25. J. R. Goodman and C. H. Sequin, Hypertree: A Multiprocessor Interconnection Topology,IEEE Trans. on Computer,C-30(12):923–933 (1981).

    Google Scholar 

  26. R. A. Finkel and M. H. Solomon, The Lens Interconnection Strategy,IEEE Trans. on Computer,C-30(12):960–965 (1981).

    Google Scholar 

  27. K. W. Doty, New Designs for Dense Processor Interconnection Networks,IEEE Trans. on Computer,C-33(5):447–450 (1984).

    Google Scholar 

  28. F. T. Leighton, Complexity Issues In VLSI, MIT Press, Cambridge, Massachusetts (1983).

    Google Scholar 

  29. S. A. Browning, The Tree Machine: A Highly Concurrent Computing Environment, Ph. D. Thesis, Dept. of Computer Science, Californa Institute Technology, Pasadena, California (1980).

    Google Scholar 

  30. B. W. Arden and H. Lee, Analysis of Chordal Ring Networks,IEEE Trans. on Computers,C-30(4):291–295 (1981).

    Google Scholar 

  31. C. R. Lang, The Extension of Object Oriented Languages to a Homogeneous Concurrent Architecture,” Ph. D. Thesis, California Institute Technology, Pasadena, California (1982).

    Google Scholar 

  32. A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir, The NYU Ultracomputer-designing an MIMD shared memory parallel computer,IEEE Trans. on Computer,C-32(2):175–189 (1983).

    Google Scholar 

  33. Y. Shiloach and Vishkin U., Finding the Maximum Merging and Sorting in a Parallel Computation Model,J. of Algorithms,2(1):88–102 (1981).

    Google Scholar 

  34. C. D. Thompson, A Complexity Theory for VLSI, Ph. D. Thesis, Dept. of Computer Science, Carnegie-Mellon Univ., Pittsburgh, Pennsylvania (1980).

    Google Scholar 

  35. C. E. Leiserson, Area-Efficient VLSI Computation, MIT Press, Cambridge, Massachusetts (1983).

    Google Scholar 

  36. C. R. Jesshope, private communication (December 1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginosar, R., Egozi, D. Topological comparison of perfect shuffle and hypercube. Int J Parallel Prog 18, 37–68 (1989). https://doi.org/10.1007/BF01409745

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01409745

Key Words