Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Trivial integer programs unsolvable by branch-and-bound

  • Short Communication
  • Published:
Mathematical Programming Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. Balas, “An additive algorithm for solving linear programs with zero–one variables”,Operations Research 13 (1965) 517–546.

    Google Scholar 

  2. E. Balas, “Linear programming with zero–one variables”, in:Proceedings of the third scientific session on statistics, Bucharest, December 5–7, 1963 (in Rumanian).

  3. E. Balas, “Discrete programming by the filter method”,Operations Research 15 (1967) 915–957.

    Google Scholar 

  4. E.M.L. Beale and R.E. Small, “Mixed integer programming by a branch-and-bound technique”, in:Proceedings of IFIP congress, Volume 2, Ed. W.A. Kalenich (Spartan Press, Washington, D.C.) pp. 450–451.

  5. M. Benichou, J.M. Gauthier, P. Girodet, G. Hentges, G. Ribiere and O. Vincent, “Experiments in mixed-integer linear programming”,Mathematical Programming 1 (1971) 76–94.

    Google Scholar 

  6. S.A. Cook, “The complexity of theorem-proving procedures”, in:Proceedings of the third annual ACM symposium on the theory of computing, Shaker Heights, Ohio, May 3–5, 1971.

  7. R.J. Dakin, “A tree search algorithm for mixed integer problems”,The Computer Journal 8 (1965) 250–255.

    Google Scholar 

  8. R.S. Garfinkel and G.L. Nemhauser,Integer programming (Wiley, New York, 1972).

    Google Scholar 

  9. F. Glover, “A multiphase dual algorithm for zero–one integer programming”,Operations Research 13 (1965) 879–919.

    Google Scholar 

  10. R.E. Gomory, “An algorithm for integer Solutions to linear programs”, in:Recent advances in mathematical programming Eds. R.L. Graves and P. Wolfe (McGraw-Hill, New York, 1963), pp. 269–302.

    Google Scholar 

  11. R.G. Jeroslow, “The simplex algorithm with the pivot rule of maximizing criterion improvement”,Discrete Mathematics 4 (1973) 367–378.

    Google Scholar 

  12. R.G. Jeroslow, “On algorithms for discrete problems”,Discrete Mathematics, to appear.

  13. R.G. Jeroslow and K.O. Kortanek, “On an algorithm of Gomory”,SIAM Journal on Applied Mathematics 21 (1) 1971 55–59.

    Google Scholar 

  14. R.M. Karp, “Reducibility among combinatorial problems”, Paper from the Department of Computer Science, University of California at Berkeley (April 1972).

  15. V. Klee and G.J. Minty, “How good is the Simplex algorithm?”, in:Inequalities III Ed. O. Shisha (Academic Press, New York, 1972).

    Google Scholar 

  16. A.H. Land and A.G. Doig, “An automatic method of solving discrete programming problems”,Econometrica 28 (1960) 497–520.

    Google Scholar 

  17. J.D.C. Little, K.G. Murty, D.W. Sweeney and C. Karel, “An algorithm for the travelingsalesman problem”,Operations Research 11 (1963) 979–989.

    Google Scholar 

  18. J.A. Tomlin, “Branch and bound methods for integer and nonconvex programming”, in:Integer and nonlinear programming Ed. J. Abadie (North-Holland, Amsterdam, 1970) pp. 437–450.

    Google Scholar 

  19. J.A. Tomlin, “An improved branch-and-bound method for integer programming”,Operations Research 15 (1971) 1070–1074.

    Google Scholar 

  20. B. Roy, R. Benayoun and J. Tergny, “From S.E.P. procedure to the mixed Ophelie program”, in:Integer and nonlinear programming Ed. J. Abadie (North-Holland, Amsterdam 1970) pp. 419–436.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeroslow, R.G. Trivial integer programs unsolvable by branch-and-bound. Mathematical Programming 6, 105–109 (1974). https://doi.org/10.1007/BF01580225

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01580225

Keywords