Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Structure of a simple scheduling polyhedron

  • Published:
Mathematical Programming Submit manuscript

Abstract

In a one-machine nonpreemptive scheduling problem, the feasible schedules may be defined by the vector of the corresponding job completion times. For given positive processing times, the associated simple scheduling polyhedronP is the convex hull of these feasible completion time vectors. The main result of this paper is a complete description of the minimal linear system definingP. We also give a complete, combinatorial description of the face lattice ofP, and a simple, O(n logn) separation algorithm. This algorithm has potential usefulness in cutting plane type algorithms for more difficult scheduling problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Bachem and M. Grötschel, “Characterizations of adjacency of faces of polyhedra,”Mathematical Programming Study 14 (1981) 1–22.

    Google Scholar 

  • A. Bachem and M. Grötschel, “New aspects of polyhedral theory,” in: B. Korte, ed.,Modern Applied Mathematics — Optimization and Operations Research (North-Holland, Amsterdam, 1982) pp. 51–106.

    Google Scholar 

  • E. Balas, “On the facial structure of scheduling polyhedra,”Mathematical Programming Study 24 (1985) 179–218.

    Google Scholar 

  • S.P. Bansal, “Single machine scheduling to minimize weighted sum of completion times with secondary criterion — a branch and bound approach,”European Journal of Operational Research 5 (1980) 177–181.

    Google Scholar 

  • M. Barbut, ed.,Ordres Totaux Finis (Mouton, Paris, 1971).

    Google Scholar 

  • M. Ben-Or, “Lower bounds for algebraic computation trees,”Proceedings 15th ACM Annual Symposium on Theory of Computing (May 1983) 80–86.

  • J.P. Benzécri, “Sur l'analyse des préférences,” in: M. Barbut, ed. (1971).

  • M. Dyer and L.A. Wolsey, “Formulating the single machine sequencing problem with release dates as a mixed integer program,”Discrete Applied Mathematics 26 (1990) 255–270.

    Google Scholar 

  • J. Edmonds, “Submodular functions, matroids and certain polyhedra,” in: R. Guy, ed.,Combinatorial Structures and Their Applications (Gordon and Breach, New York, 1970) pp. 68–87.

    Google Scholar 

  • R.E. Fox, “OPT—an answer for America,”Inventories and Production, Nov.–Dec. 1982, 10–19.

    Google Scholar 

  • S. Fujishige, “Submodular systems and related topics,”Mathematical Programming Study 22 (1984) 113–131.

    Google Scholar 

  • G. Grätzer,General Lattice Theory (Academic Press, New York, 1978).

    Google Scholar 

  • M. Grötschel, L. Lovász and A. Schrijver, “The ellipsoid method and its consequences in combinatorial optimization,”Combinatorica 1 (1981) 169–197.

    Google Scholar 

  • B. Grünbaum,Convex Polytopes (Wiley, London, 1967).

    Google Scholar 

  • G. Th. Guilbaud and P. Rosenstiehl, “Analyse algébrique d'un scrutin,” in: M. Barbut, ed. (1971).

  • K. Jordan,Calculus of Finite Differences (Chelsea, New York, 1947).

  • G. Kreweras, “Représentation polyédrique des préordres complets finis,” in: M. Barbut, ed. (1971).

  • E.L. Lawler, “Recent results in the theory of machine scheduling,” in: A. Bachem, M. Grötschel and B. Korte, eds.,Mathematical Programming: The State of the Art — Bonn 1982 (Springer, Berlin, 1983) pp. 202–234.

    Google Scholar 

  • E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, “Recent developments in deterministic sequencing and scheduling: a survey,” in: M.A.H. Dempster, J.K. Lenstra and A.H.G. Rinnooy Kan, eds.,Deterministic and Stochastic Scheduling (Reidel, Dordrecht, 1982) pp. 35–73.

    Google Scholar 

  • E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, “Sequencing and scheduling: Algorithms and complexity,” Report BS-8909, Centre for Mathematics and Computer Science (Amsterdam, 1989).

    Google Scholar 

  • J.K. Lenstra and A.H.G. Rinnooy Kan, “New directions in scheduling theory,”Operations Research Letters 2 (1984) 255–259.

    Google Scholar 

  • J.K. Lenstra and A.H.G. Rinnooy Kan, “Scheduling theory since 1981: An annotated bibliography,” Report BW 188, Centre for Mathematics and Computer Science (Amsterdam, 1983).

    Google Scholar 

  • L. Lovász, “Submodular functions and convexity,” in: A. Bachem, M. Grötschel and B. Korte, eds.,Mathematical Programming: The State of the Art — Bonn 1982 (Springer, Berlin, 1983) pp. 235–257.

    Google Scholar 

  • J.-C. Picard and M. Queyranne, “Selected applications of minimum cuts in networks,”INFOR 20 (1982) 394–422.

    Google Scholar 

  • M.E. Posner, “Minimizing weighted completion times with deadlines,”Operations Research 33 (1985) 562–574.

    Google Scholar 

  • W.R. Pulleyblank, “Polyhedral Combinatorics,” in: A. Bachem, M. Grötschel and B. Korte, eds.,Mathematical Programming: The State of the Art — Bonn 1982 (Springer, Berlin, 1983) pp. 101–123.

    Google Scholar 

  • F.P. Preparata and M.I. Shamos,Computational Geometry: An Introduction (Springer, New York, 1985).

    Google Scholar 

  • M. Queyranne, “Structure of a nonpreemptive one-machine scheduling polyhedron,” TIMS/ORSA Joint National Meeting, New Orleans, May 1987.

    Google Scholar 

  • M. Queyranne and Y. Wang, “Single-machine scheduling polyhedra with precedence constraints,”Mathematics of Operations Research 16 (1991) 1–20.

    Google Scholar 

  • R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, NJ, 1970).

    Google Scholar 

  • W.E. Smith, “Various optimizers for single-stage production,”Naval Research and Logistics Quarterly 3 (1956) 59–66.

    Google Scholar 

  • J. Stoer and C. Witzgall,Convexity and Optimization in Finite Dimensions I (Springer, Berlin, 1970).

    Google Scholar 

  • P. Tseng, private communication (July 1986).

  • A.C. Yao and R.L. Rivest, “On the polyhedral decision problem,”SIAM Journal on Computing 9 (1980) 343–347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada, and by a Killam University Research Fellowship. The original version of this paper was completed when the author was visiting the Laboratoire d'Automatique et d'Analyse des Systèmes, Toulouse, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Queyranne, M. Structure of a simple scheduling polyhedron. Mathematical Programming 58, 263–285 (1993). https://doi.org/10.1007/BF01581271

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01581271

Key words