Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A modified reduced gradient method for a class of nondifferentiable problems

  • Published:
Mathematical Programming Submit manuscript

Abstract

The class of nondifferentiable problems treated in this paper constitutes the dual of a class of convex differentiable problems. The primal problem involves faithfully convex functions of linear mappings of the independent variables in the objective function and in the constraints. The points of the dual problem where the objective function is nondifferentiable are known: the method presented here takes advantage of this fact to propose modifications necessary in the reduced gradient method to guarantee convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A. Beck and J.G. Ecker, “A modified concave simplex algorithm for geometric programming”,Journal of Optimization Theory and Applications 15 (1975) 189–202.

    Google Scholar 

  2. R.J. Duffin, E.J. Peterson and C. Zener,Geometric programming: Theory and applications (John Wiley and Sons, New York, 1967).

    Google Scholar 

  3. J.G. Ecker and W. Gochet, “A reduced gradient method for quadratic programs with quadratic constraints andl p -constrainedl p -approximation problems”, Research Paper 7610, Departement Toegepaste Ekonomische Wetenschappen, Katholieke Universiteit Leuven (Leuven, 1976).

    Google Scholar 

  4. J.G. Ecker, W. Gochet and Y. Smeers, “Modified reduced gradient method for dual posynomial programming”,Journal of Optimization Theory and its Applications 26(2) (1978) 265–275.

    Google Scholar 

  5. W. Gochet and Y. Smeers, “A modified reduced gradient method for a class of nondifferentiable problems”, Research Report, Departement Toegepaste Ekonomische Wetenschappen, Katholieke Universiteit Leuven (Leuven, 1978).

    Google Scholar 

  6. P. Huard, “Convergence de la méthode du gradient réduit”, in: O. Mangasarian, R. Meyer and S. Robinson, eds.,Nonlinear programming 2 (Academic Press, New York, 1975) pp. 29–54.

    Google Scholar 

  7. C. Lemaréchal, “An extension of Davidon methods to non differentiable problems”, in: R. Balinsky and P. Wolfe, eds.,Nondifferentiable optimization (Mathematical programming study 3) (North-Holland, Amsterdam, 1975) pp. 95–109.

    Google Scholar 

  8. P.G. Luenberger,Introduction to linear and nonlinear programming (Addison—Wesley, Reading, MA, 1973).

    Google Scholar 

  9. H. Mokhtar-Kharroubi, “Sur quelques méthodes de gradient réduit sous contraintes linéaires”,Bulletin Electricité de France, Série C 1(1978) 53–66.

    Google Scholar 

  10. E. Peterson and J.G. Ecker, “Geometric programming: Duality in quadratic programming andl p -approximationI”, in: H.W. Kuhn and A. Tucker, eds.,Proceedings of the Princeton symposium on mathematical programming (Princeton University Press, Princeton, NJ, 1970).

    Google Scholar 

  11. E. Peterson and J.G. Ecker, “Geometric programming: Duality in quadratic programming andl p -approximation II: Canonical programs”,SIAM Journal on Applied Mathematics 17 (1969) 317–340.

    Google Scholar 

  12. E. Peterson and J.G. Ecker, “Geometric programming: Duality in quadratic programming andl p -approximation III: Degenerate programs”,Journal of Mathematical Analysis and Applications 29 (1970) 365–383.

    Google Scholar 

  13. T. Rockafellar,Convex analysis (Princeton University Press, Princeton, NJ, 1970).

    Google Scholar 

  14. T. Rockafellar, “Some convex programs whose duals are linearly constrained”, in: J.B. Rosen, O. Mangasarian and K. Ritter, eds.,Nonlinear programming (Academic Press, New York, 1970).

    Google Scholar 

  15. P. Wolfe, “Methods of nonlinear programming”, in: R. Graves and P. Wolfe, eds.,Recent advances in mathematical programming (McGraw-Hill, New York, 1963) pp. 67–86.

    Google Scholar 

  16. P. Wolfe, “A method of conjugate subgradients for minimizing nondifferentiable functions”, in: R. Balinsky and P. Wolfe, eds.,Nondifferentiable optimization (Mathematical programming study 3) (North-Holland, Amsterdam, 1975) pp. 95–101.

    Google Scholar 

  17. W. Zangwill, “The convex simplex method”,Management Science 14 (1967) 221–238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gochet, W., Smeers, Y. A modified reduced gradient method for a class of nondifferentiable problems. Mathematical Programming 19, 137–154 (1980). https://doi.org/10.1007/BF01581637

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01581637

Key words