Abstract
The class of nondifferentiable problems treated in this paper constitutes the dual of a class of convex differentiable problems. The primal problem involves faithfully convex functions of linear mappings of the independent variables in the objective function and in the constraints. The points of the dual problem where the objective function is nondifferentiable are known: the method presented here takes advantage of this fact to propose modifications necessary in the reduced gradient method to guarantee convergence.
Similar content being viewed by others
References
P.A. Beck and J.G. Ecker, “A modified concave simplex algorithm for geometric programming”,Journal of Optimization Theory and Applications 15 (1975) 189–202.
R.J. Duffin, E.J. Peterson and C. Zener,Geometric programming: Theory and applications (John Wiley and Sons, New York, 1967).
J.G. Ecker and W. Gochet, “A reduced gradient method for quadratic programs with quadratic constraints andl p -constrainedl p -approximation problems”, Research Paper 7610, Departement Toegepaste Ekonomische Wetenschappen, Katholieke Universiteit Leuven (Leuven, 1976).
J.G. Ecker, W. Gochet and Y. Smeers, “Modified reduced gradient method for dual posynomial programming”,Journal of Optimization Theory and its Applications 26(2) (1978) 265–275.
W. Gochet and Y. Smeers, “A modified reduced gradient method for a class of nondifferentiable problems”, Research Report, Departement Toegepaste Ekonomische Wetenschappen, Katholieke Universiteit Leuven (Leuven, 1978).
P. Huard, “Convergence de la méthode du gradient réduit”, in: O. Mangasarian, R. Meyer and S. Robinson, eds.,Nonlinear programming 2 (Academic Press, New York, 1975) pp. 29–54.
C. Lemaréchal, “An extension of Davidon methods to non differentiable problems”, in: R. Balinsky and P. Wolfe, eds.,Nondifferentiable optimization (Mathematical programming study 3) (North-Holland, Amsterdam, 1975) pp. 95–109.
P.G. Luenberger,Introduction to linear and nonlinear programming (Addison—Wesley, Reading, MA, 1973).
H. Mokhtar-Kharroubi, “Sur quelques méthodes de gradient réduit sous contraintes linéaires”,Bulletin Electricité de France, Série C 1(1978) 53–66.
E. Peterson and J.G. Ecker, “Geometric programming: Duality in quadratic programming andl p -approximationI”, in: H.W. Kuhn and A. Tucker, eds.,Proceedings of the Princeton symposium on mathematical programming (Princeton University Press, Princeton, NJ, 1970).
E. Peterson and J.G. Ecker, “Geometric programming: Duality in quadratic programming andl p -approximation II: Canonical programs”,SIAM Journal on Applied Mathematics 17 (1969) 317–340.
E. Peterson and J.G. Ecker, “Geometric programming: Duality in quadratic programming andl p -approximation III: Degenerate programs”,Journal of Mathematical Analysis and Applications 29 (1970) 365–383.
T. Rockafellar,Convex analysis (Princeton University Press, Princeton, NJ, 1970).
T. Rockafellar, “Some convex programs whose duals are linearly constrained”, in: J.B. Rosen, O. Mangasarian and K. Ritter, eds.,Nonlinear programming (Academic Press, New York, 1970).
P. Wolfe, “Methods of nonlinear programming”, in: R. Graves and P. Wolfe, eds.,Recent advances in mathematical programming (McGraw-Hill, New York, 1963) pp. 67–86.
P. Wolfe, “A method of conjugate subgradients for minimizing nondifferentiable functions”, in: R. Balinsky and P. Wolfe, eds.,Nondifferentiable optimization (Mathematical programming study 3) (North-Holland, Amsterdam, 1975) pp. 95–101.
W. Zangwill, “The convex simplex method”,Management Science 14 (1967) 221–238.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Gochet, W., Smeers, Y. A modified reduced gradient method for a class of nondifferentiable problems. Mathematical Programming 19, 137–154 (1980). https://doi.org/10.1007/BF01581637
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01581637