Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Minimizing symmetric submodular functions

  • Published:
Mathematical Programming Submit manuscript

Abstract

We describe a purely combinatorial algorithm which, given a submodular set functionf on a finite setV, finds a nontrivial subsetA ofV minimizingf[A] + f[V ∖ A]. This algorithm, an extension of the Nagamochi—Ibaraki minimum cut algorithm as simplified by Stoer and Wagner [M. Stoer, F. Wagner, A simple min cut algorithm, Proceedings of the European Symposium on Algorithms ESA '94, LNCS 855, Springer, Berlin, 1994, pp. 141–147] and by Frank [A. Frank, On the edge-connectivity algorithm of Nagamochi and Ibaraki, Laboratoire Artémis, IMAG, Université J. Fourier, Grenbole, 1994], minimizes any symmetric submodular function using O(|V|3) calls to a function value oracle. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Topkis, Minimizing a submodular function on a lattice, Operations Research 26 (1978) 305–321.

    Google Scholar 

  2. L. Lovász, Submodular functions and convexity, in: A. Bachem et al. (Eds.), Mathematical Programming — The State of The Art, Springer, Berlin, 1983 pp. 235–257.

    Google Scholar 

  3. S. Fujishige, Submodular systems and related topics, Mathematical Programming Study 22 (1984) 113–131.

    Google Scholar 

  4. S.Fujishige, Submodular Functions and Optimization, North-Holland, Amsterdam, The Netherlands, 1991.

    Google Scholar 

  5. M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer, Berlin, 1988.

    Google Scholar 

  6. L. Lovász, Personal communication, Electronic mail, 1996.

  7. W.H. Cunningham, On submodular function minimization, Combinatorica 5 (1985) 185–192.

    Google Scholar 

  8. C.K. Cheng, T.C. Hu, Maximum concurrent flows and minimum cuts, Algorithmica 8 (1992) 233–249.

    Google Scholar 

  9. S. Fujishige, Canonical decomposition of symmetric submodular systems, Discrete Applied Mathematics 5 (1983) 175–190.

    Google Scholar 

  10. L.E. Ford Jr., D.R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, NJ, 1962.

    Google Scholar 

  11. J. Hao, J.B. Orlin, A faster algorithm for finding a minimum cut in a graph, Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms, 1992, pp. 165–174.

  12. R.E. Gomory, T.C. Hu, Multiterminal network flows, SIAM Journal on Applied Mathematics 9 (1961) 551–570.

    Google Scholar 

  13. H. Nagamochi, T. Ibaraki, Linear time algorithms for finding a sparsek-connected spanning subgraph of ak-connected graph, Algorithmica 7 (1992) 583–596.

    Google Scholar 

  14. H. Nagamochi, T. Ibaraki, Computing edge connectivity in multigraphs and capacitated graphs, SIAM Journal on Discrete Mathematics 5 (1992) 54–66.

    Google Scholar 

  15. M. Stoer, F. Wagner, A simple min cut algorithm, Proceedings of the European Symposium on Algorithms ESA, '94, LNCS 855, Springer, Berlin, 1994, pp. 141–147.

    Google Scholar 

  16. A. Frank, On the edge-connectivity algorithm of Nagamochi and Ibaraki, Laboratoire Artémis, IMAG, Université J. Fourier, Grenoble, 1994.

    Google Scholar 

  17. H. Nagamochi, T. Ono, T. Ibaraki, Implementing an efficient minimum capacity cut algorithm, Mathematical Programming 67 (1994) 325–341.

    Google Scholar 

  18. M.W. Padberg, G. Rinaldi, An Efficient algorithm for the minimum capacity cut problem, Mathematical Programming 47 (1990) 19–36.

    Google Scholar 

  19. K. Mehlhorn, C. Uhrig, The minimum cut algorithm of Stoer and Wagner, Max Planck, Institute for Computer Science, Saarbrücken, Germany, 1994.

    Google Scholar 

  20. R.P. Gupta, On flows in pseudosymmetric networks, SIAM Journal on Applied Mathematics (1966) 215–225.

  21. F. Granot, M. Penn, M. Queyranne, Disconnecting sets in single and two-terminal-pair networks, Networks 27 (1996) 117–123.

    Google Scholar 

  22. F. Wagner, Personal communication, Berlin, 1995.

  23. M. Queyranne, A combinatorial algorithm for minimizing symmetric submodular functions, Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 1995, pp. 98–101.

  24. W.H. Cunningham, Decomposition of submodular functions, Combinatorica 3 (1983) 53–68.

    Google Scholar 

  25. M. Baïou, F. Barahona, A.R. Mahjoub, Separation of partition inequalities, Laboratoire SPO, Département d'Informatique, Université de Bretagne Occidentale, Brest, France, 1996.

    Google Scholar 

  26. W.H. Cunningham, Optimal attack and reinforcement of a network, Journal of the ACM 32 (1985) 549–561.

    Google Scholar 

  27. F. Barahona, Separating from the dominant of the spanning tree polytope, Operations Research Letters 12 (1992) 201–203.

    Google Scholar 

  28. M.W. Padberg, M.R. Rao, Odd-minimum cut-sets andb-matchings, Mathematics of Operations Research 7 (1982) 67–80.

    Google Scholar 

  29. H.N. Gabow, M.X. Goemans, D.P. Williamson, An efficient approximation algorithm for the survivable network design problem, Mathematical Programming, this issue.

  30. M.X. Goemans, V.S. Ramakrishnan, Minimizing submodular functions over families of sets, Combinatorica 15 (1995) 499–513.

    Google Scholar 

  31. H. Narayanan, Submodular Functions and Electrical Networks, North-Holland, Amsterdam, 1997.

    Google Scholar 

  32. A. Subramanian, Two recent algorithms for the global minimum cut problem,, SIGACT News 26 (2) (1995) 78–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Queyranne, M. Minimizing symmetric submodular functions. Mathematical Programming 82, 3–12 (1998). https://doi.org/10.1007/BF01585863

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01585863

Keywords