Abstract
We describe a purely combinatorial algorithm which, given a submodular set functionf on a finite setV, finds a nontrivial subsetA ofV minimizingf[A] + f[V ∖ A]. This algorithm, an extension of the Nagamochi—Ibaraki minimum cut algorithm as simplified by Stoer and Wagner [M. Stoer, F. Wagner, A simple min cut algorithm, Proceedings of the European Symposium on Algorithms ESA '94, LNCS 855, Springer, Berlin, 1994, pp. 141–147] and by Frank [A. Frank, On the edge-connectivity algorithm of Nagamochi and Ibaraki, Laboratoire Artémis, IMAG, Université J. Fourier, Grenbole, 1994], minimizes any symmetric submodular function using O(|V|3) calls to a function value oracle. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
Similar content being viewed by others
References
D.M. Topkis, Minimizing a submodular function on a lattice, Operations Research 26 (1978) 305–321.
L. Lovász, Submodular functions and convexity, in: A. Bachem et al. (Eds.), Mathematical Programming — The State of The Art, Springer, Berlin, 1983 pp. 235–257.
S. Fujishige, Submodular systems and related topics, Mathematical Programming Study 22 (1984) 113–131.
S.Fujishige, Submodular Functions and Optimization, North-Holland, Amsterdam, The Netherlands, 1991.
M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer, Berlin, 1988.
L. Lovász, Personal communication, Electronic mail, 1996.
W.H. Cunningham, On submodular function minimization, Combinatorica 5 (1985) 185–192.
C.K. Cheng, T.C. Hu, Maximum concurrent flows and minimum cuts, Algorithmica 8 (1992) 233–249.
S. Fujishige, Canonical decomposition of symmetric submodular systems, Discrete Applied Mathematics 5 (1983) 175–190.
L.E. Ford Jr., D.R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, NJ, 1962.
J. Hao, J.B. Orlin, A faster algorithm for finding a minimum cut in a graph, Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms, 1992, pp. 165–174.
R.E. Gomory, T.C. Hu, Multiterminal network flows, SIAM Journal on Applied Mathematics 9 (1961) 551–570.
H. Nagamochi, T. Ibaraki, Linear time algorithms for finding a sparsek-connected spanning subgraph of ak-connected graph, Algorithmica 7 (1992) 583–596.
H. Nagamochi, T. Ibaraki, Computing edge connectivity in multigraphs and capacitated graphs, SIAM Journal on Discrete Mathematics 5 (1992) 54–66.
M. Stoer, F. Wagner, A simple min cut algorithm, Proceedings of the European Symposium on Algorithms ESA, '94, LNCS 855, Springer, Berlin, 1994, pp. 141–147.
A. Frank, On the edge-connectivity algorithm of Nagamochi and Ibaraki, Laboratoire Artémis, IMAG, Université J. Fourier, Grenoble, 1994.
H. Nagamochi, T. Ono, T. Ibaraki, Implementing an efficient minimum capacity cut algorithm, Mathematical Programming 67 (1994) 325–341.
M.W. Padberg, G. Rinaldi, An Efficient algorithm for the minimum capacity cut problem, Mathematical Programming 47 (1990) 19–36.
K. Mehlhorn, C. Uhrig, The minimum cut algorithm of Stoer and Wagner, Max Planck, Institute for Computer Science, Saarbrücken, Germany, 1994.
R.P. Gupta, On flows in pseudosymmetric networks, SIAM Journal on Applied Mathematics (1966) 215–225.
F. Granot, M. Penn, M. Queyranne, Disconnecting sets in single and two-terminal-pair networks, Networks 27 (1996) 117–123.
F. Wagner, Personal communication, Berlin, 1995.
M. Queyranne, A combinatorial algorithm for minimizing symmetric submodular functions, Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 1995, pp. 98–101.
W.H. Cunningham, Decomposition of submodular functions, Combinatorica 3 (1983) 53–68.
M. Baïou, F. Barahona, A.R. Mahjoub, Separation of partition inequalities, Laboratoire SPO, Département d'Informatique, Université de Bretagne Occidentale, Brest, France, 1996.
W.H. Cunningham, Optimal attack and reinforcement of a network, Journal of the ACM 32 (1985) 549–561.
F. Barahona, Separating from the dominant of the spanning tree polytope, Operations Research Letters 12 (1992) 201–203.
M.W. Padberg, M.R. Rao, Odd-minimum cut-sets andb-matchings, Mathematics of Operations Research 7 (1982) 67–80.
H.N. Gabow, M.X. Goemans, D.P. Williamson, An efficient approximation algorithm for the survivable network design problem, Mathematical Programming, this issue.
M.X. Goemans, V.S. Ramakrishnan, Minimizing submodular functions over families of sets, Combinatorica 15 (1995) 499–513.
H. Narayanan, Submodular Functions and Electrical Networks, North-Holland, Amsterdam, 1997.
A. Subramanian, Two recent algorithms for the global minimum cut problem,, SIGACT News 26 (2) (1995) 78–87.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Queyranne, M. Minimizing symmetric submodular functions. Mathematical Programming 82, 3–12 (1998). https://doi.org/10.1007/BF01585863
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF01585863