Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A complexity calculus for recursive tree algorithms

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

We study a restricted programming language over tree structures. For this language, we give systematic translation rules which map programs into complexity descriptors. The descriptors are in the form of generating functions of average costs. Such a direct approach avoids recourse to recurrences; it therefore simplifies the task of analyzing algorithms in the class considered and permits analysis of structurally complex programs. It also allows a clear discussion of analytic properties of complexity descriptors whose singularities are related to the asymptotic behavior of average costs. Algorithms that are analyzed in this way include formal differentiation, tree matching, tree compatibility, and simplification of expressions in a diversity of contexts. Some general results relating (average case) complexity properties to structural properties of programs in the class can also be derived in this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Berstel and C. Reutenauer, Recognizable formal power series on trees,Theoret. Comput. Sci.,18 (1982), 128–145.

    Google Scholar 

  2. W. Burge,Recursive Programming Techniques, Addison-Wesley, Reading, MA, 1975.

    Google Scholar 

  3. G. Darboux, Mémoire sur l'approximation des fonctions de très grands nombres, et sur une classe étendue de développements en série,J. Math. Pures Appl. (3)IV (1878), 1–56.

    Google Scholar 

  4. P. Flajolet, Analyse d'algorithmes de manipulation d'arbres et de fichiers, Thèse, Paris, 1979; Cahiers du B.U.R.O. No. 34–35, Paris, 1981.

  5. P. Flajolet and A. Odlyzko, The average height of binary trees and other simple trees,J. Comput. System Sci.,25 (1982), 171–213.

    Google Scholar 

  6. D. Foata and M.-P. Schützenberger,Théorie géométrique des polynômes eulériens, Lecture Notes in Mathematics, Vol. 138, Springer-Verlag, Berlin, 1970.

    Google Scholar 

  7. I. J. Good, Generalizations to several variables of Lagrange's expansion, with applications to stochastic processes,Math. Proc. Cambridge Philos. Soc.,56 (1960), 367–380.

    Google Scholar 

  8. I. J. Good, The generalization of Lagrange's expansion and the enumeration of trees,Math. Proc. Cambridge Philos. Soc.,61 (1965), 499–517.

    Google Scholar 

  9. I. Goulden and D. Jackson,Combinatorial Enumeration, Wiley, New York, 1983.

    Google Scholar 

  10. P. Henrici,Applied and Computational Complex Analysis, Wiley, New York, 1974.

    Google Scholar 

  11. D. E. Knuth,The Art of Computer Programming: Fundamental Algorithms, Addison-Wesley, Reading, MA, 1968.

    Google Scholar 

  12. D. E. Knuth,The Art of Computer Programming: Sorting and Searching, Addison-Wesley, Reading, MA, 1973.

    Google Scholar 

  13. A. Meir and J. W. Moon, On the altitude of nodes in random trees,Canad. J. Math.,30 (1978), 997–1015.

    Google Scholar 

  14. A. Odlyzko, Periodic oscillations of coefficients of power series that satisfy functional equations,Adv. in Math.,44 (1982), 180–205.

    Google Scholar 

  15. G. Polya, Kombinatorische Anzahlbestimmungen für Graphen, Gruppen und chemische Verbindungen,Acta Math.,68 (1937), 145–254.

    Google Scholar 

  16. L. Ramshaw, Formalizing the analysis of algorithms, Ph.D. thesis, Stanford University, Stanford, CA, 1979.

    Google Scholar 

  17. G.-C. Rota,Finite Operator Calculus, Academic Press, New York, 1975.

    Google Scholar 

  18. J.-M. Steyaert, Structure et complexité des algorithmes, Thèse, Paris, 1984.

    Google Scholar 

  19. J.-M. Steyaert and P. Flajolet, Patterns and pattern-matching in trees: an analysis,Inform. and Control,58 (1983), 19–58.

    Google Scholar 

  20. J. W. Thatcher, Tree automata: an informal survey, inCurrents in the Theory of Computing (A. V. Aho, ed.), Prentice Hall, Englewood Cliffs, NJ, 1973, pp. 143–178.

    Google Scholar 

  21. J. Vuillemin, A unifying look at data structures,Comm. ACM,23 (1980), 229–239.

    Google Scholar 

  22. B. Wegbreit, Mechanical program analysis,Comm. ACM,18 (1975), 528–532.

    Google Scholar 

  23. B. Wegbreit, Verifying program performance,J. Assoc. Comput. Mach.,23 (1976), 691–699.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flajolet, P., Steyaert, JM. A complexity calculus for recursive tree algorithms. Math. Systems Theory 19, 301–331 (1986). https://doi.org/10.1007/BF01704918

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01704918

Keywords