Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A new construction for Williamson-type matrices

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

It is shown that ifq is a prime power then there are Williamson-type matrices of order

  1. (i)

    1/2q 2(q + 1) whenq ≡ 1 (mod 4).

  2. (ii)

    1/4q 2(q + 1) whenq ≡ 3 (mod 4) and there are Williamson-type matrices of order 1/4(q + 1).

This gives Williamson-type matrices for the new orders 363, 1183, 1805, 2601, 3174, 5103. The construction can be combined with known results on orthogonal designs to give an Hadamard matrix of the new order 33396 = 4 ⋅ 8349.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dembowski, P.: Finite Geometries. Berlin-Heidelberg-New York: Springer-Verlag 1968

    Google Scholar 

  2. Drake, D.A.: Partialλ-geometries and generalized matrices over groups. Canad. J. Math.31, 617–627 (1979)

    Google Scholar 

  3. Drake, D.A., Lenz, H.: Finite Klingenberg planes. Abh. Math. Semin. Univ. Hamb.44, 70–83 (1975)

    Google Scholar 

  4. Geramita, A.V., Seberry, J.: Orthogonal Designs: Quadratic Forms and Hadamard Matrices. New York-Basel: Marcel Dekker 1979

    Google Scholar 

  5. Glynn, D.G.: Finite projective planes and related combinatorial systems. Ph.D. thesis, University of Adelaide 1978

  6. Jungnickel, D.J.: On difference families, resolvable transversal designs and generalized Hadamard matrices. Math. Z.167, 49–60 (1979)

    Google Scholar 

  7. Mathon, R.: Symmetric conference matrices of orderpq 2 + 1. Canad. J. Math.30, 321–331 (1978)

    Google Scholar 

  8. Mavron, V.C.: Constructions for resolvable and related designs. Aequationes Math.23, 131–145 (1981)

    Google Scholar 

  9. Mukopadhyay, A.C.: Some infinite classes of Hadamard matrices. J. Comb. Theory (A)25, 128–141 (1978)

    Google Scholar 

  10. Seberry, J.: Some infinite classes of Hadamard matrices. J. Aust. Math. Soc. (A)25, 128–141 (1980)

    Google Scholar 

  11. Seberry, J., Whiteman, A.L.: New Hadamard matrices and conference matrices obtained via mathon's construction. Combinatorica (submitted)

  12. Wallis, J.S.: Hadamard matrices, part IV. In: Combinatorics: Room Squares, Sum Free Sets, Hadamard Matrices. Lecture Notes in Mathematics 292. Berlin-Heidelberg-New York: Springer-Verlag 1972

    Google Scholar 

  13. Wallis, J.S.: Some matrices of Williamson type. Utilitas Math.4, 147–154 (1973)

    Google Scholar 

  14. Wallis, J.S.: Williamson matrices of even order. In: Combinatorial Matrices. Lecture Notes in Mathematics 403. Berlin-Heidelberg-New York: Springer-Verlag 1974

    Google Scholar 

  15. Wallis, J.S.: Construction of Williamson type matrices. Linear and Multilinear Algebra3, 197–207 (1975)

    Google Scholar 

  16. Wallis, J.: Some results on configurations. J. Aust. Math. Soc.12, 378–384 (1971)

    Google Scholar 

  17. Yamada, M.: On the Williamson typej matrices of order 4⋅29, 4⋅41, and 4⋅37. J. Comb. Theory (A)27, 378–381 (1979)

    Google Scholar 

  18. Yamada, M.: On the Williamson matrices of Turyn's type and typej. Comment. Math. Univ. St. Pauli31, 1, 71–73 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by an ARGS grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seberry, J. A new construction for Williamson-type matrices. Graphs and Combinatorics 2, 81–87 (1986). https://doi.org/10.1007/BF01788080

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01788080

Keywords