Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quadratic leaves of maximal partial triple systems

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Every graph having vertex degrees zero and two satisfying the basic necessary conditions is the leave of a maximal partial triple system, with one exception (C 4C 5). The proof technique is direct, using the method of differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, L.D., Hilton, A.J.W., Mendelsohn, E.: Embedding partial Steiner triple systems. Proc. London Math. Soc.41, 557–576 (1980)

    Google Scholar 

  2. Castagna, F., Prins, G.: Every generalized Petersen graph has a Tait coloring. Pacific J. Math.40, 53–58 (1972).

    Google Scholar 

  3. Colbourn, C.J.: Embedding partial Steiner triple systems is NP-complete. J. Comb. Theory (A)35, 100–105 (1983)

    Google Scholar 

  4. Colbourn, C.J., Colbourn, M.J., Rosa, A.: Completing small partial triple systems. Discrete Math.45, 165–179 (1983)

    Google Scholar 

  5. Colbourn, C.J., Jungnickel, D., Rosa, A.: The strong chromatic number of partial triple system. Discrete Appl. Math (to appear)

  6. Colbourn, C.J., Rosa, A.: Maximal partial triple systems of orderv ≤ 11. Ars Comb.20, 5–28 (1985)

    Google Scholar 

  7. Colbourn, C.J., Rosa, A.: Element neighbourhoods in twofold triple systems. J. of Geom. (to appear)

  8. Colbourn, M.J., Mathon, R.A.: On cyclic Steiner 2-designs. Ann. Discrete Math.7, 215–253 (1980)

    Google Scholar 

  9. Hartman, A.: Tripling quadruple systems. Ars Comb.10, 255–309 (1980)

    Google Scholar 

  10. Hilton, A.J.W., Rodger, C.A.: Triangulating nearly complete graphs of odd order (in preparation)

  11. Mendelsohn, E.: private communications 1984

  12. Novák, J.: Edge bases of complete uniform hypergraphs. Mat. Čas.24, 43–57 (1974)

    Google Scholar 

  13. Novák, J.: Přiśpěvek k teorii kombinaci. Čas. Pěstováni Mat.88, 129–141 (1963)

    Google Scholar 

  14. Simpson, J.E.: Langford sequences: perfect and hooked. Discrete Math.44, 97–104 (1983)

    Google Scholar 

  15. Spencer, J.: Maximal consistent families of triples. J. Comb. Theory5 1–8 (1968)

    Google Scholar 

  16. Stern, G., Lenz, H.: Steiner triple systems with given subspaces: another proof of the Doyen-Wilson theorem. Boll. Unione Mat. Ital. (A)17, 109–114 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colbourn, C.J., Rosa, A. Quadratic leaves of maximal partial triple systems. Graphs and Combinatorics 2, 317–337 (1986). https://doi.org/10.1007/BF01788106

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01788106

Keywords