Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The maximum number of edges in a 3-graph not containing a given star

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Suppose that is a collection of 3-subsets of{1, 2,..., n} which does not contain ak-star (i.e.,k 3-sets any two of which intersect in the same singleton). Fork ≥ 3 andn ≥ n 0 (k), the collections having largest possible sizes are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berge, C.: Sur le couplage maximum d'un graphe. C.R. Acad. Sci. Paris247, 258–259 (1958)

    Google Scholar 

  2. Chung, F.R.K.: Unavoidable stars in 3-graphs, J. Comb. Theory (A)35, 252–262 (1983)

    Google Scholar 

  3. Chung, F.R.K., Erdös, P.: On unavoidable graphs. Combinatorica3, 167–176 (1983)

    Google Scholar 

  4. Chung, F.R.K., Erdös, P.: On unavoidable hypergraphs. J. Graph Theory (to appear)

  5. Duke, R.A., Erdös, P.: Systems of finite sets having a common intersection. In: Proceedings, 8th S-E Conf. Combinatorics, Graph Theory and Computing, pp. 247–252. 1977

  6. Erdös, P.: A problem on independentr-tuples. Annales Univ. Sci. Budap.8, 93–95 (1965)

    Google Scholar 

  7. Erdös, P.: On the combinatorial problems with I would most like to see solved. Combinatorica1, 25–42 (1981)

    Google Scholar 

  8. Erdös, P., Rado, R.: Intersection theorems for systems of sets, I. J. London Math. Soc.35, 85–90 (1960)

    Google Scholar 

  9. Erdös, P., Ko, C., Rado, R.: Intersection theorems for systems of finite sets. Q. J. Math. Oxford12, 313–320 (1961)

    Google Scholar 

  10. Frankl, P.: An extremal problem for 3-graphs. Acta Math. Acad. Sci. Hung.32, 157–160 (1978)

    Google Scholar 

  11. Frankl, P.: An extremal set theoretical characterization of some Steiner systems. Combinatorica3, 193–199 (1983)

    Google Scholar 

  12. Frankl, P., Füredi, Z.: Forbidding just one intersection. J. Comb. Theory (A)39, 160–176 (1985)

    Google Scholar 

  13. Frankl, P., Füredi, Z.: Exact solution of some Turán — type problems. J. Comb. Theory (A) (in press)

  14. Sós, V.T.: Some remarks on the connection of graph theory, finite geometry and block designs. In: Proc. Combinatorial Conf., pp. 223–233 Rome 1976

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, F.R.K., Frankl, P. The maximum number of edges in a 3-graph not containing a given star. Graphs and Combinatorics 3, 111–126 (1987). https://doi.org/10.1007/BF01788535

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01788535