Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

New algorithms for the DFT and the 2-dimensional DFT are presented. The DFT and the 2-dimensional DFT matrices can be expressed as the Kronecker product of DFT matrices of smaller dimension. These algorithms are synthesized by combining the efficient factorization of the Kronecker product of matrices with the highly hardware efficient recursive implementation of the smaller DFT matrices, to yield these algorithms. The architectures of the processors implementing these algorithms consist of 2-dimensional grid of processing elements, have temporal and spatial locality of connections. For computing the DFT of sizeN or for the 2D DFT of sizeN=N 1 byN 1, these algorithms require 2N multipliers and adders, take approximately\(2\sqrt N \) computational steps for computing a transform vector, and take approximately\(\sqrt N \) computation steps between the computation of two successive transform vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.V. Oppenheim and R.W. Schafer,Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1975.

    MATH  Google Scholar 

  2. E.O. Brigham,The Fast Fourier Transform, Englewood Cliffs, NJ: Prentice-Hall, 1974.

    MATH  Google Scholar 

  3. D.F. Elliott and K.R. Rao,Fast Transforms, New York: Academic Press, 1982.

    MATH  Google Scholar 

  4. I.J. Good, “The interactive algorithm and the practical Fourier analysis,”J. Roy. Statist. Soc. Ser. B, vol. 20, 1958, pp. 34–35.

    MathSciNet  Google Scholar 

  5. J.W. Cooley and J.W. Tukey, “An algorithm for the machine calculation of complex Fourier serier,”Math. Computation, vol. 19, 1965, pp. 297–301.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Winograd, “A new method for computing DFT,”Proc. IEEE Int. Comp., Acoust. Speech Signal Process., Hartford, Connecticut, 1977, pp. 366–368.

  7. CM. Rader, “Discrete Fourier transforms when the numbers of data samples is prime,”Proc. IEEE vol.56, 1968, pp. 1107–1108.

    Article  Google Scholar 

  8. H.J. Nussbaumer, “Fast computations of discrete Fourier transforms using polynomial transforms,”IEEE Trans. Acoust. Speech and Signal Processing, vol. ASSP-27, 1979, pp. 169–181.

    Article  MathSciNet  Google Scholar 

  9. CM. Rader and N.M. Brenner, “A new principle for fast Fourier transformation,”IEEE Trans. Acoust. Speech and Signal Processing, vol. ASSP-25, 1976, pp. 264–265.

    Article  Google Scholar 

  10. D.P. Kolba and T.W. Parks, “A prime factor FFT algorithm using high-speed convolution,”IEEE Trans. Acoust. Speech and Signal Processing, vol. ASSP-25, 1977, pp. 90–103.

    Google Scholar 

  11. J.B. Martens, “Recursive cyclotomic factorization—A new algorithm for calculating the discrete Fourier transform,”IEEE Trans. Acoust. Speech and Signal Processing, vol. ASSP-32, 1984, pp. 750–761.

    Article  MathSciNet  Google Scholar 

  12. P. Duhamel and H. Hollmann, “Split radix FFT algorithm,”Electronic Letters, vol. 20, 1984, pp. 14–16.

    Article  Google Scholar 

  13. E. Dubios and A. Venetsanopoulos, “A new algorithm for the Radix-3 FFT,”IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-26, 1978, pp. 222–225.

    Article  Google Scholar 

  14. S. Prakash and V.V. Rao, “A new Radix-6 FFT algorithm,”IEEE Trans. Acoust. Speech and Signal Processing, vol. ASSP-29, 1981, pp. 939–941.

    Article  Google Scholar 

  15. H.J. Nussbaumer and P. Quandalle, “Computation of convolutions and discrete Fourier transforms by polynomial transforms,”IBM J. Res. Dev., vol. 22, 1978, pp. 134–144.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Goertzel, “An algorithm for the evaluation of finite Fourier series,”Amer. Math Monthly, vol. 65, 1958, pp. 34–35.

    Article  MathSciNet  MATH  Google Scholar 

  17. G.H. Hostetter, “Recursive discrete Fourier transformation,”IEEE Trans. Acoust. Speech and Signal Processing, vol. ASSP-28, 1980, pp. 184–190.

    Article  Google Scholar 

  18. C.W. Barnes and Hwang Chung, “Recursive computation of discrete transforms—A state-space approach,” Submitted to theProceedings of the IEEE, Invited Paper.

  19. K.L. Caspari, “Generalized spectral analysis,”Proceedings of the 1970 Symposium and Workshop on Applications of Walsh Functions, Naval Research Laboratory and University of Maryland, Washington, D.C.

  20. G. Bongiovanni, “Two VLSI structures for the discrete Fourier transform,”IEEE Trans. on Computers, vol. C-32, 1983.

  21. G. Bongiovanni, “A VLSI network for variable size FFTs,”IEEE Trans. on Computers, vol. C-32, 1983.

  22. M.A. Ghouse, “Modular hardware realizations of the discrete Fourier transform, the generalized Fourier transform, and the separable multidimensional cyclic convolution,” Ph.D. Dissertation, University of California at Irvine, Irvine, 1988.

    Google Scholar 

  23. CD. Thompson, “Fourier transforms in VLSI,”IEEE Trans. on Computers, vol. C-32, 1983, pp. 1047–1057.

    Article  Google Scholar 

  24. R.M. Owens and M.J. Irwin, “The arithmetic cube,”IEEE Trans. on Computers, vol. C-36, 1987, pp. 1342–1348.

    Article  Google Scholar 

  25. C. Mead and L. Conway,Introduction to VLSI Systems, New York: Addison-Wesley, 1980.

    Google Scholar 

  26. CD. Thompson, “A complexity theory for VLSI,” Ph.D. Dissertation, Carnegie-Mellon University, August 1980.

  27. B. Chazelle and L. Monier, “A model of computation for VLSI with related complexity results,”Proc. 13th Annu. ACM Symp., Theory of Computing, pp. 318–325, 1981.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghouse, M.A. 2D grid architectures for the DFT and the 2D DFT. J VLSI Sign Process Syst Sign Image Video Technol 5, 57–74 (1993). https://doi.org/10.1007/BF01880272

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01880272

Keywords