Abstract
A generalization of gauge theory in which the gauge potential1-form is replaced by a p-form is studied. Charged particles are then replaced by elementary extended objects of dimension p−1. It is shown that this extension is compatible with space-time locality only if the gauge group is U(1). A source which is a closed p−1 surface has zero total charge and corresponds to a particle-antiparticle pair. Its quantum rate of production in an external uniform field is evaluated semiclassically. The analog of the Dirac magnetic pole is constructed. It is another extended object, of dimension n−p−3, where n is the dimension of space-time. The “electric” and “magnetic” charges obey the Dirac quantization condition. This condition is derived in two different ways. One method makes use of local gauge patches and the other brings in singular gauge transformations. A topological mass term is introduced and it is shown that it can coexist with a magnetic pole when n=2p+1, provided the topological mass is quantized.
Similar content being viewed by others
References
C. Teitelboim,Phys. Lett. B 167, 63 (1986).
V. I. Ogievetsky and I. V. Polubarinov,Sov. J. Nucl. Phys. (Yadernaya Fizika) 4, 210 (1968) (in Russian); P. Townsend, K. Pilch and P. van Nieuwenhuizen,Phys. Lett. B 139, 38 (1984); E. Cremmer, B. Julia, and J. Scherk,Phys. Lett. B 76, 409 (1978); D. Z. Freedman and P. K. Townsend,Nucl. Phys. B 177, 282 (1981); J. Thierry-Mieg and Y. Ne'eman,Proc. Natl. Acad. Sci. USA 79, 7068 (1982); E. Cremmer and J. Scherk,Nucl. Phys. B 72, 117 (1974); M. Kalb and P. Ramond,Phys. Rev. D 9, 2273 (1974); Y. Nambu,Phys. Rep. 23, 250 (1976); T. Curtright and P. G. O. Freund,Nucl. Phys. B 172, 431 (1980); J. Schwarz and P. C. West,Phys. Lett. B 126, 301 (1983); P. A. Marchetti and R. Percacci,Lett. Math. Phys. 6, 405 (1982).
C. Teitelboim,Ann. Phys. (N.Y.) 79, 542 (1973).
T. Regge and C. Teitelboim, inProceedings of the First Marcel Grossmann on General Relativity, R. Ruffini, ed. (North-Holland, Amsterdam), p. 77.
S. Coleman,Phys. Rev. D 15, 2929 (1977); A. Vilenkin,Phys. Rev. D 27, 2848 (1983).
C. Teitelboim,Phys. Lett. B 167, 69 (1986).
G. 't Hooft,Nucl. Phys. B 79, 276 (1974); A. M. Polyakov,JETP Lett. 20, 194 (1974).
P. A. M. Dirac,Phys. Rev. 74, 817 (1948).
T. T. Wu and C. N. Yang,Phys. Rev. D 12, 3845 (1975); O. Alvarez,Comm. Math. Phys. 100, 279 (1985).
Y. Aharonov and D. Bohm,Phys. Rev. 115, 485 (1959).
H. Flanders,Differential Forms (Academic Press, New York), Chap. 6.
S. Coleman, inLe monopôle magnétique cinquante ans après R. Stora, ed.,Les Houches 1981 (North-Holland, Amsterdam).
T. T. Wu and C. N. Yang,Nucl. Phys. B 107, 365 (1976).
P. Goddard and D. Olive,Rep. Prog. Phys. 41, 1357 (1978).
W. Siegel,Nucl. Phys. B 156, 135 (1979); J. Schonfeld,Nucl. Phys. B 185, 157 (1981); R. Jackiw and S. Templeton,Phys. Rev. D 23, 2291 (1981); S. Deser, R. Jackiw, and S. Templeton,Phys. Rev. Lett. 48, 975 (1982);Ann. Phys. (N.Y.) 140, 372 (1982); R. Jackiw, inLes Houches 1983 (North-Holland, Amsterdam); C. Aragone,Phys. Lett. B 131, 69 (1983).
M. Henneaux and C. Teitelboim,Phys. Rev. Lett. 56, 689 (1986).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Henneaux, M., Teitelboim, C. p-Form electrodynamics. Found Phys 16, 593–617 (1986). https://doi.org/10.1007/BF01889624
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01889624