Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stellare Abänderungen und Schälbarkeit von Komplexen und Polytopen

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

Brugesser and Mani proved that the boundary-complex of a convex polytope can be “shelled”. This result lead to McMullen's proof of the “Upper-bound-conjecture”. We show that the “shellability” of complexes has a close connection to the theory of stellar operations. Several results on special shelling procedures and on non-shellable complexes are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. ALTSHULER, A. und STEINBERG, L.: Neighborly combinatorial 3-manifolds with 9 vertices, Discrete Mathematics 8 (1974), 113–137.

    Google Scholar 

  2. BARNETTE, D.: Diagrams and Schlegel diagrams, Combinatorial Structures and their Applications, Gordon and Breach, New York, 1–4, 1970.

    Google Scholar 

  3. BRUGESSER, H. und MANI, P.: Shellable decompositions of cells and spheres, Math. Scand. 29 (1972), 197–205.

    Google Scholar 

  4. DANARAJ, G. und KLEE, V.: Shellings of spheres and polytopes, Duke Math. J. 41 (1974), 443–451.

    Google Scholar 

  5. DANARAJ, G. und KLEE, V.: A representation of 2-dimensional pseudomanifolds and its use in the design of a linear-time shelling algorithm, erscheint demnächst.

  6. DANARAJ, G. und KLEE, V.: Which spheres are shellable?, Manuskript, 1976.

  7. EWALD, G.: Über die stellare Äquivalenz konvexer Polytope, erscheint demnächst.

  8. EWALD, G. und SHEPHARD, G.C.: Stellar subdivisions of boundary complexes of convex polytopes, Math. Ann. 210 (1974), 7–16.

    Google Scholar 

  9. GLASER, L.C.: Geometrical combinatorial topology, Vol. I, Van Nostrand Reinhold Company, New York, 1970.

    Google Scholar 

  10. GRÜNBAUM, B.: Convex polytopes, Interscience Publishers New York, 1967.

    Google Scholar 

  11. GRÜNBAUM, B.: Two non-shellable triangulations of the 3-cell, Manuskript 1972.

  12. HUDSON, J.F.P.: Piecewise linear topology, University of Chicago lecture notes, W.A. Benjamin, New York, 1969.

    Google Scholar 

  13. KLEE, V.: Polytope pairs and their relationship to linear programming, Acta math. 133 (1974), 1–25.

    Google Scholar 

  14. KLEINSCHMIDT, P.: Eine graphentheoretische Kennzeichnung der Stapelpolytope, Arch. der Math. 27 (1976), 663–667.

    Google Scholar 

  15. KLEINSCHMIDT, P.: Sphären mit wenigen Ecken, Geometriae Dedicata, erscheint demnächst.

  16. MCMULLEN, P.: The maximum number of faces of a convex polytope, Mathematika 17 (1970), 179–184.

    Google Scholar 

  17. PACHNER, U.: Bistellare Äquivalenz kombinatorischer Mannigfaltigkeiten, Archiv der Math., erscheint demnächst.

  18. RUDIN, M.E.: An unshellable triangulation of a tetrahedron, Bull. Amer. Math. Soc. (1958), 90–91.

  19. SHEPHARD, G.C.: Sections and projections of convex polytopes, Mathematika, 19 (1972), 144–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinschmidt, P. Stellare Abänderungen und Schälbarkeit von Komplexen und Polytopen. J Geom 11, 161–176 (1978). https://doi.org/10.1007/BF01917206

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01917206