Abstract
Brugesser and Mani proved that the boundary-complex of a convex polytope can be “shelled”. This result lead to McMullen's proof of the “Upper-bound-conjecture”. We show that the “shellability” of complexes has a close connection to the theory of stellar operations. Several results on special shelling procedures and on non-shellable complexes are obtained.
Similar content being viewed by others
Literatur
ALTSHULER, A. und STEINBERG, L.: Neighborly combinatorial 3-manifolds with 9 vertices, Discrete Mathematics 8 (1974), 113–137.
BARNETTE, D.: Diagrams and Schlegel diagrams, Combinatorial Structures and their Applications, Gordon and Breach, New York, 1–4, 1970.
BRUGESSER, H. und MANI, P.: Shellable decompositions of cells and spheres, Math. Scand. 29 (1972), 197–205.
DANARAJ, G. und KLEE, V.: Shellings of spheres and polytopes, Duke Math. J. 41 (1974), 443–451.
DANARAJ, G. und KLEE, V.: A representation of 2-dimensional pseudomanifolds and its use in the design of a linear-time shelling algorithm, erscheint demnächst.
DANARAJ, G. und KLEE, V.: Which spheres are shellable?, Manuskript, 1976.
EWALD, G.: Über die stellare Äquivalenz konvexer Polytope, erscheint demnächst.
EWALD, G. und SHEPHARD, G.C.: Stellar subdivisions of boundary complexes of convex polytopes, Math. Ann. 210 (1974), 7–16.
GLASER, L.C.: Geometrical combinatorial topology, Vol. I, Van Nostrand Reinhold Company, New York, 1970.
GRÜNBAUM, B.: Convex polytopes, Interscience Publishers New York, 1967.
GRÜNBAUM, B.: Two non-shellable triangulations of the 3-cell, Manuskript 1972.
HUDSON, J.F.P.: Piecewise linear topology, University of Chicago lecture notes, W.A. Benjamin, New York, 1969.
KLEE, V.: Polytope pairs and their relationship to linear programming, Acta math. 133 (1974), 1–25.
KLEINSCHMIDT, P.: Eine graphentheoretische Kennzeichnung der Stapelpolytope, Arch. der Math. 27 (1976), 663–667.
KLEINSCHMIDT, P.: Sphären mit wenigen Ecken, Geometriae Dedicata, erscheint demnächst.
MCMULLEN, P.: The maximum number of faces of a convex polytope, Mathematika 17 (1970), 179–184.
PACHNER, U.: Bistellare Äquivalenz kombinatorischer Mannigfaltigkeiten, Archiv der Math., erscheint demnächst.
RUDIN, M.E.: An unshellable triangulation of a tetrahedron, Bull. Amer. Math. Soc. (1958), 90–91.
SHEPHARD, G.C.: Sections and projections of convex polytopes, Mathematika, 19 (1972), 144–162.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kleinschmidt, P. Stellare Abänderungen und Schälbarkeit von Komplexen und Polytopen. J Geom 11, 161–176 (1978). https://doi.org/10.1007/BF01917206
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01917206