Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Primitive actimoterigian fishes can synthesize ascorbic acid

  • Research Articles
  • Published:
Experientia Aims and scope Submit manuscript

A Correction to this article was published on 01 January 1995

This article has been updated

Abstract

Amphibians and reptiles evolved with the capacity to synthesize ascorbic acid. Some higher vertebrates, like bats, guinea pigs, primates, and humans have lost the microsomal enzyme gulonolactone oxidase, and in cases of ascorbic acid deficiency suffer from symptoms of scurvy. The question of whether the capacity to synthesize ascorbate is also present in lower vertebrates could throw light on the evolution of this pathway. In order to find out whether ascorbic acid synthesis took place in two primitive Actinopterigian fish, the paddlefish (Polydon spathula) and the white sturgeon (Acipenser transmontanus) were fed with a scorbutogenic diet or diet(s) supplemented with a graded level of ascorbic acid. We found no growth depression nor external symptoms of scurvy, which would be pronounced in modern bony fishes (Teleostei) under similar conditions. The tissue level of ascorbate in both these primitive species indicated that vitamin C in intestine and liver is not depleted when fed a scorbutogenic diet. Gulonolactone oxidase activity was found in the kineys of the Actinopterigian fishes. Thus, I question the accepted evolutionary pathway for ascorbic acid biosynthesis in lower vertebrates and suggest that the modern bony fishes,Teleostei, lost their ability to express the gulonolactone oxidase genes after they had separated during the Silurian from their common ancestor with the coelacanths (Latimeria) and Dipnoi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Chatterjee, I. B., Science182 (1973) 1271.

    Article  CAS  PubMed  Google Scholar 

  2. Chatterjee, I. B., Majumder, A. K., Nandi, B. K., and Subramanian, N., Ann. N.Y. Acad. Sci.258 (1974) 24.

    Article  Google Scholar 

  3. Dabrowski, K., Biol. Chem. Hoppe Seyler371 (1990) 207.

    Article  CAS  PubMed  Google Scholar 

  4. Birney, E. C., Jenness, R., and Ayaz, K. M., Nature26 (1976) 626.

    Article  Google Scholar 

  5. Burns, J. J., Nature180 (1957) 553.

    Article  CAS  PubMed  Google Scholar 

  6. Dabrowski, K., J. Fish Biol.40 (1992) 273.

    Article  CAS  Google Scholar 

  7. Dabrowski, K., El-Fiky, N., Kock, G., Frigg, M., and Wieser, W., Aquaculture91 (1990) 317.

    Article  CAS  Google Scholar 

  8. Dabrowski, K., Lackner, R., and Doblander, C., Can. J. Fish Aquat. Sci.47 (1990) 1518.

    Article  CAS  Google Scholar 

  9. Roy, R. N., and Guha, B. C., Nature182 (1958) 319.

    Article  CAS  PubMed  Google Scholar 

  10. Dykhuizen, D. E., Harrison, K. M., and Richardson, B. J., Experientia36 (1980) 945.

    Article  CAS  PubMed  Google Scholar 

  11. Dabrowski, K., in: Ascorbic Acid in Animal Nutrition, p. 344. Eds C. Wenk, R. Fenster and L. Volker, F. Hoffmann-La Roche, Basel 1992.

    Google Scholar 

  12. Dabrowski, K., and Hinterleitner, S., Analyst114 (1989) 83.

    Article  CAS  PubMed  Google Scholar 

  13. Dabrowski, K., and Blom, J., Ascorbyl monophosphate requirements of rainbow trout (Oncorhynchus mykiss) broodstock. World Aquaculture, Torremolinos, Spain 1993.

    Google Scholar 

  14. Lin, C., and Lovell, R. T., Pathology of vitamin C deficiency syndrome in channel catfish (Ictalurus punctatus). J. Nutr.108 (1978) 1137.

    Article  Google Scholar 

  15. Tsao, C. S., Leung, P. Y., and Young, M. J., Nutr.117 (1987) 291.

    CAS  Google Scholar 

  16. Tsao, C. S., and Young, M., Life Sciences45 (1989) 1553.

    Article  CAS  PubMed  Google Scholar 

  17. Brown, M. R., and Miller, K. A. J., appl. Phycol.4 (1992) 205.

    Article  CAS  Google Scholar 

  18. Poulet, S. A., Hapette, A. M., Cole, R. B., and Tabet, J. C. Limnol. Oceanogr.34 (1989) 1325.

    Article  CAS  Google Scholar 

  19. Dabrowski, K., Comp. Biochem. Physiol.104A (1993) 579.

    Article  CAS  Google Scholar 

  20. Kuhn-Schnyder, E., and Riber, H., Handbook of Paleozoology. The Johns Hopkins University Press, Baltimore, MD 1986.

    Google Scholar 

  21. Forey, P. L., Nature336 (1988) 727.

    Article  Google Scholar 

  22. Joss, J. M. P., Cramp, N., Baverstock, P. R., and Johnson, A. M., Aust. J. Zool.39 (1991) 509.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dabrowski, K. Primitive actimoterigian fishes can synthesize ascorbic acid. Experientia 50, 745–748 (1994). https://doi.org/10.1007/BF01919376

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01919376

Key words