Abstract
We describe two variants of a tabu search heuristic, a deterministic one and a probabilistic one, for the maximum clique problem. This heuristic may be viewed as a natural alternative implementation of tabu search for this problem when compared to existing ones. We also present a new random graph generator, the\(\hat p\)-generator, which produces graphs with larger clique sizes than comparable ones obtained by classical random graph generating techniques. Computational results on a large set of test problems randomly generated with this new generator are reported and compared with those of other approximate methods.
Similar content being viewed by others
References
G. Avondo-Bodeno,Economic Applications of the Theory of Graphs (Gordon and Breach, New York, 1962).
L. Babel, Finding maximum cliques in arbitrary and in special graphs, Report TUM-M9008, Mathematisches Institut und Institut für Informatik, Technische Universität München (1990), to appear in Computing.
L. Babel and G. Tinhofer, A branch and bound algorithm for the maximum clique problem, Zeits. Oper. Res. 34(1990)207–217.
E. Balas and J. Xue, Minimum weighted coloring of triangulated graphs, with application to maximum weight vertex packing and clique finding in arbitrary graphs, SIAM J. Comput. 20(1991)209–221.
E. Balas and C.S Yu, Finding a maximum clique in an arbitrary graph, SIAM J. Comput. 15(1986)1054–1068.
C. Berge,Théorie des Graphes et ses Applications (Dunod, Paris, 1962).
B. Bollobas,Random Graphs (Academic Press, London, 1985).
B. Bollobas and P. Erdös, Cliques in random graphs, Math. Proc. Camb. Phil. Soc. 80(1976)419–427.
C. Bron and J. Kerbosch, Finding all cliques of an undirected graph, Comm. ACM 16(1973)575–577.
R. Carraghan and P.M. Pardalos, An exact algorithm for the maximum clique problem, Oper. Res. Lett. 9(1990)375–382.
V. Degot and J.M. Hualde, De l'utilisation de la notion de clique (sous-graphe complet symétrique) en matière de typologie des populations, Revue française d'automatique et recherche opérationelle: Recherche opérationelle 9(1975)5–18.
N. Deo,Graph Theory with Applications to Engineering and Computer Science (Prentice-Hall, Englewood Cliffs, 1974).
C. Ebenegger, P.L. Hammer and D. de Werra, Pseudo-Boolean functions and stability of graphs, Ann. Discr. Math. 19(1984)83–98.
C. Friden, A Hertz and D. de Werra, Stabulus: a technique for finding stable sets in large graphs with tabu search, Computing 42(1989)35–44.
C. Friden, A Hertz and D. de Werra, Tabaris: An exact algorithm based on tabu search for finding a maximum independent set in a graph, Comput. Oper. Res. 17(1990)437–445.
M.R. Garey and D.S. Johnson,Computers and Intractibility: a Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).
M. Gendreau, A fast greedy algorithm for the maximum clique problem, paper presented at the TIMS/ORSA Meeting, New Orleans (May 1987).
M. Gendreau, J.-C. Picard and L. Zubieta, An efficient implicit enumeration algorithm for the maximum clique problem, in:Advances in Optimization and Control ed. H.A. Eiselt and G. Pederzoli (Springer, Berlin, 1988).
M. Gendreau, L. Salvail and P. Soriano, An appraisal of greedy heuristics for the maximum clique problem, Centre de Recherche sur les Transports, Université de Montréal, forthcoming.
M. Gendreau, P. Soriano and L. Salvail, Simulated annealing and cliques, Centre de Recherche sur les Transports, Université de Montréal, forthcoming; paper presented at the ORSA/TIMS Meeting, New York (October 1989).
L. Gerhards and W. Lindenberg, Clique detection for nondirected graphs: two new algorithms, Computing 21 (1979)295–322.
F. Glover, Future paths for integer programming and links to artificial intelligence, Comput. Oper. Res. 13(1986)533–549.
F. Glover, Tabu search. Part I, ORSA J. Comput. 1(1989)190–206.
F. Glover, Tabu search. Part II, ORSA J. Comput. 2(1990)4–32.
J.W. Greene and K.J. Supowit, Simulated annealing without rejected moves, IEEE Trans. Comput. Aided Des. CAD-5(1986)221–228.
M. Grötschel, L. Lovasz and A. Schrijver,Geometric Algorithms and Combinatorial Optimization (Springer, Berlin, 1988).
P. Hansen and B. Jaumard, Algorithms for the maximum satisfiability problem, RUTCOR Research Report 43–87, Rutgers University (1987).
F. Harary, Graph theory as a structural model in the social sciences, in:Graph Theory and its Applications, ed. B. Harris (Academic Press, New York, 1970).
A. Hertz and D. de Werra, Using tabu search techniques for graph coloring, Computing 29(1987)345–351.
D.S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. Syst. Sci. 9(1974)256–278.
D.S. Johnson, M. Yannakakis and C.H. Papadimitriou, On generating all maximal independent sets, Inf. Proc. Lett. 27(1988)119–123.
S. Kirkpatrick, C.D. Gelatt Jr. and M.P. Vecchi, Optimization by simulated annealing, Science 220(1983)671–680.
E. Loukakis, A new backtracking algorithm for generating the family of maximal independent sets of a graph, Comput. Math. Appl. 9(1983)583–589.
E. Loukakis and C. Tsouros, Determining the number of internal stability of a graph, Int. J. Comput. Math. 11(1982)207–220.
D.W. Matula, The employee party problem, Not. A.M.S. 19(1972)A-382.
D.W. Matula, The largest clique in a random graph, Technical Report CS7608, Southern Methodist University (1976).
D.W. Matula, Expose-and-merge exploration and the chromatic number of a random graph, Combinatorica 7(1987)275–284.
P.M. Pardalos and N. Desai, An algorithm for finding a maximum weighted independent set in arbitrary graph, Int. J. Comput. Math. 38(1991)163–175.
P.M. Pardalos and A. Phillips, A global optimization approach for solving the maximum clique problem, Int. J. Comput. Math. 33((1990)209–216.
P.M. Pardalos and G.P. Rodgers, A branch and bound algorithm for the maximum clique problem, Comp. Oper. Res. 19(1992)363–375.
J.M. Robson, Algorithms for the maximum independent sets, J. Algor. 7(1986)425–440.
B. Roy,Algèbre Moderne et Théorie des Graphes, Vol. 1 (Dunod, Paris, 1969).
C.E. Shannon, The zero-error capacity of a noisy channel,Symp. on Information Theory, I.R.E. Trans. 3(1956).
R.E. Tarjan and A.E. Trojanowski, Finding a maximum independent set, SIAM J. Comput. 6(1977)537–546.
J. Turner and W.H. Kautz, A survey of progress in graph theory in the Soviet Union, SIAM 12(1970).
D. de Werra and A. Hertz, Tabu search techniques: A tutorial and application to neural networks, OR Spektrum 11(1989)131–141.
M. Widmer and A. Hertz, A new heuristic method for solving the flow shop sequencing problem, Eur. J. Oper. Res. 41(1989)186–193.
Author information
Authors and Affiliations
Additional information
The authors are grateful to the Quebec Government (Fonds F.C.A.R.) and to the Canadian Natural Sciences and Engineering Research Council (grant 0GP0038816) for financial support.
Rights and permissions
About this article
Cite this article
Gendreau, M., Soriano, P. & Salvail, L. Solving the maximum clique problem using a tabu search approach. Ann Oper Res 41, 385–403 (1993). https://doi.org/10.1007/BF02023002
Issue Date:
DOI: https://doi.org/10.1007/BF02023002