Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

In search of allelopathy in the Florida scrub: The role of terpenoids

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The hypothesis was tested that allelopathic agents released from fire-sensitive plants of the Florida scrub community deter the invasion of fireprone sandhill grasses. The structures of the constituents of four endemic scrub species,Conradina canescens, Calamintha ashei, Chrysoma pauciflosculosa, andCeratiola ericiodes, were established and their phytotoxic activity against two grasses of the sandhill was examined. Effects of the secondary metabolites from the above scrub species and their degradation products upon the germination and radicle growth of little bluestem (Schizachyrium scoparium) and green sprangletop (Leptochloa dubia), two native grasses of the Florida sandhill community, were determined. The studies included determination of the water solubility and release mechanism of terpenes and other allelopathic agents from the source plants and their aqueous transport to the target species. Some of the natural products were nontoxic until activated by light and/or oxidation after release from the source plant into the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asplund, R.O. 1968. Monoterpenes: Relationship between structure and inhibition of germination.Phytochemistry 7:1995–1997.

    Google Scholar 

  • Asplund, R.O. 1969. Some quantitative aspects of the phytotoxicity of monoterpenes.Weed Sci. 17:454–455.

    Google Scholar 

  • Blum, U., andDalton, B.R. 1985. Effects of ferulic acid, an allelopathic compound, on leaf expansion of cucumber seedlings, grown in nutrient culture.J. Chem. Ecol. 10:1169–1191.

    Google Scholar 

  • Blum, U., andRebbeck, J. 1989. Inhibition and recovery of cucumber roots given multiple treatments of ferulic acid in nutrient culture.J. Chem. Ecol. 15(3):917–928.

    Google Scholar 

  • Blum, U., andShafer, S.R. 1988. Microbial populations and phenolic acids in soil.Soil Biol. Biochem. 20:793–800.

    Google Scholar 

  • Boerner, H. 1960. Liberation of organic substances from higher plants and their role in the soil sickness problem.Bot. Rev. 26:393–424.

    Google Scholar 

  • Budavari, S. (ed.). 1989. Merck Index, 11th ed. Merck & Co., Rahway, New Jersey.

    Google Scholar 

  • Christensen, N.L. 1988. Vegetation of the Southeastern coastal plain, pp. 317–363,in M.G. Barbour and W.D. Billings (eds.). North American Terrestrial Vegetation. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Davis, E.F. 1928. The toxic principle ofJuglans nigra as identified with synthetic juglone and its toxic effects on tomato and alfalfa plants.Am. J. Bot. 15:620 (abstract).

    Google Scholar 

  • Duke, S.O. 1991. Plant terpenoids as pesticides, pp. 269–296,in R.F. Keeler and A.T. Tu (eds.). Handbook of Natural Toxins, Vol. 6. Marcel Dekker, New York.

    Google Scholar 

  • Duke, S.O., andPaul, R.N. 1993. Development and fine structure of the glandular trichomes ofArtemisia annua. L.Int. J. Plant Sci. 154:107–118.

    Google Scholar 

  • Einhellig, F.A. 1987. Interaction among allelochemicals and other stress factors of the plant environment, pp. 343–357,in G.R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. American Chemical Society Symposium Series Vol. 330. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Einhellig, F.A., andEckrich, P. 1984. Interactions of temperature and ferulic acid stress on grain sorghum and soybeans.J. Chem. Ecol. 10:161–170.

    Google Scholar 

  • Eisner, T., McCormick, K.D., Sakaino, M., Eisner, M., Smedley, S.R., Aneshansley, D.J., Deyrup, M., Myers, R.L., andMeinwald, J. 1990. Chemical defense of a rare mint plant.Chemoecology 1:30–37.

    Google Scholar 

  • Eleuterius, L.N. 1979. Final report for the coastal field research laboratory. Gulf Coast Research Laboratory, Ocean Springs, Mississippi, pp. 101–110.

    Google Scholar 

  • Evenari, M. 1949. Germination inhibitors.Bot. Rev. 15:153–194.

    Google Scholar 

  • Fischer, N.H. 1986. The function of mono- and sesquiterpenes as plant germination and growth regulators, pp. 203–218,in A.R. Putnam and C.S. Tang (eds.). The Science of Allelopathy. John Wiley, New York.

    Google Scholar 

  • Fischer, N.H. 1991. Plant terpenoids as allelopathic agents, pp. 377–398,in J.B. Harborne and F.A. Tomas-Barberan (eds.). Ecological Chemistry and Biochemistry of Plant Terpenoids. Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Fischer, N.H., Tanrisever, N., andWilliamson, G.B. 1988. Allelopathy in the Florida scrub community as a model for natural herbicide actions, pp. 233–249,in H. Cutler (ed.). Natural Products: Potential in Agriculture. American Chemical Society Symposium Series 380. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Fischer, N.H., Williamson, G.B., Tanrisever, N., de la Pena, A., Weidenhamer, J.D., Jordan, E.D., andRichardson, D.R. 1989. Allelopathic actions in the Florida scrub community.Biol. Plant. 31(6):471–478.

    Google Scholar 

  • Friedman, J. 1987. Allelopathy in desert ecosystems, pp. 53–68,in G.R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. American Chemical Society Symposium Series 330. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Gershenzon, J. 1993. The cost of plant chemical defenses against herbivory: A biochemical perspective, pp. 105–173,in E.A. Bernays (ed.). Plant-Insect Interactions, Vol. 5. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Glass, A.D.M. 1973. Influence of phenolic acids on ion uptake. I. Inhibition of phosphate uptake.Plant Physiol. 51:1037–1041.

    Google Scholar 

  • Glass, A.D.M. 1974. Influence of phenolic acids on ion uptake. III. Inhibition of potassium absorption.J. Exp. Bot. 25:1104–1113.

    Google Scholar 

  • Harborne, J.B. 1984. Phytochemical Methods, 2nd ed. Chapman and Hall, London.

    Google Scholar 

  • Harborne, J.B. 1988. Introduction to Ecological Biochemistry, 3rd ed. Academic Press, London.

    Google Scholar 

  • Harper, J.L. 1975. Allelopathy.Q. Rev. Biol. 50:493–495.

    Google Scholar 

  • Harper, J.L. 1977. Population Biology of Plants. Academic Press, New York.

    Google Scholar 

  • Harper, J.R., andBalke, N.E. 1981. Characterization of the inhibition of K+ absorption in oat roots by salicylic acid.Plant Physiol. 68:1349–1353.

    Google Scholar 

  • Harper, R.M. 1914. Geography and vegetation of northern Florida.Annu. Rep. Fla. State Geol. Surv. 6:163–391.

    Google Scholar 

  • Harper, R.M. 1915. The natural resources of an area in central Florida.Annu. Rep. Fla. State Geol. Surv. 13:71–301.

    Google Scholar 

  • Hebb, E.A. 1982. Sand pine performs well in the Georgia-Carolina sandhills.South. J. Appl. For. 6:144–147.

    Google Scholar 

  • Hernandez, H. 1988. Search for allelochemicals in rice (Oryza sativa L.) and structure determination of external flavonoids fromCalamintha ashei. Ph.D. dissertation. Louisiana State University, Baton Rouge, Louisiana.

    Google Scholar 

  • Hernandez, H., andFischer, N.H. 1988. Unambiguous structure determination of a new flavonoid, 5,6,4′-trihydroxy-7,8,3′-trimethoxyflavone, by the use of INEPT NMR techniques.Spectrosc. Lett. 21:927–934.

    Google Scholar 

  • Hollis, C.A., Smith, J.E., andFisher, R.F. 1982. Allelopathic effects of common understory species on germination and growth of southern pines.For. Sci. 28(3):509–515.

    Google Scholar 

  • Horner, J.D., Gosz, J.R., andCates, R.G. 1988. The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems.Am. Nat. 132(6):869–883.

    Google Scholar 

  • Jordan, E. 1990. Seasonal changes in concentrations of secondary compounds from foliage, litter and soils of the Florida scrub. PhD. dissertation. Louisiana State University, Baton Rouge, Louisiana.

    Google Scholar 

  • Kalisz, P.J., andStone, E.L. 1984. The longleaf pine islands of the Ocala National Forest, Florida: A soil study.Ecology 65:1743–1754.

    Google Scholar 

  • Kelsey, R.G., Reynolds, G.W., andRodriguez, E. 1984. The chemistry of biologically active constituents secreted and stored in plant glandular trichomes, pp. 187–241,in E. Rodriguez, P.L. Healy, and I. Metha (eds.). Biology and Chemistry of Plant Trichomes. Plenum Press, New York.

    Google Scholar 

  • Kobayashi, A., Morimoto, M., Shibata, Y., Yamashita, K., andNumata, M. 1980. C10-polyacetylenes as allelopathic substances in dominants in early stages of secondary succession.J. Chem. Ecol. 6:119–121.

    Google Scholar 

  • Laessle, A.M. 1958. The origin and successional relationship of sandhill vegetation and sand pine scrub.Ecol. Monogr. 28:361–387.

    Google Scholar 

  • Laessle, A.M. 1968. Relationships of sand pine scrub to former shorelines.J. Fla. Acad. Sci. 30:269–286.

    Google Scholar 

  • Langenheim, J.H. 1994. Higher plant terpenoids: A phytocentric overview of their ecological roles.J. Chem. Ecol. 20:1223–1279.

    Google Scholar 

  • Macias, F.A., Fronczek, F.R., andFischer, N.H. 1989. Menthofurans fromCalamintha ashei and the absolute configuration of desacetylcalaminthone.Phytochemistry 28:79–82.

    Google Scholar 

  • McPherson, J.K., Chou, C.H., andMuller, C.H. 1971. Allelopathic constituents of the chaparral shrubAdenostoma fasciculatum.Phytochemistry 10:2925–2933.

    Google Scholar 

  • Menelaou, M.A. 1990. Structural and biosynthetic studies of natural products of the Asteraceae and Lamiaceae. PhD dissertation. Louisiana State University, Baton Rouge, Louisiana.

    Google Scholar 

  • Menelaou, M.A., Foroozesh, M., Williamson, G.B., Fronczek, F.R., Fischer, H.D., andFischer, N.H. 1992. Polyacetylenes fromChrysoma pauciflosculosa: Effects on Florida sandhill species.Phytochemistry 31:3769–3771.

    Google Scholar 

  • Menelaou, M.A., Weidenhamer, J.D., Williamson, G.B., Fronczek, F.R., Fischer, H.D., Quijano, L., andFischer, N.H. 1993. Diterpenes fromChrysoma pauciflosculosa: Effects on Florida sandhill species.Phytochemistry 34:97–105.

    Google Scholar 

  • Menges, E.S., andSalzman, V.T. 1992. Archbold Biological Station Plant List. Archbold Biological Station, Lake Placid, Florida, 79 pp.

    Google Scholar 

  • Metcalfe, C.R., andChalk, L. 1965. Anatomy of the Dicotyledons, Vol. II. Oxford on the Clarendon Press, London.

    Google Scholar 

  • Molisch, H. 1937. Der Einfluss einer Pflanze auf die Andere-Allelopathie. Fischer, Jena.

    Google Scholar 

  • Muller, C.H. 1965a. Inhibitory terpenes volatilized from Salvia shrubs.Bull. Torrey Bot. Club 92:38–45.

    Google Scholar 

  • Muller, C.H. 1965b. Volatile materials produced bySalvia leucophylla: Effects on seedling growth and soil bacteria.Bot. Gaz. 126:195–200.

    Google Scholar 

  • Muller, C.H. 1966. The role of chemical inhibition (allelopathy) in vegetational composition.Bull. Torrey Bot. Club 93:332–351.

    Google Scholar 

  • Muller, C.H. 1969. Allelopathy as a factor in ecological process.Vegetacio 18:348–357.

    Google Scholar 

  • Muller, C.H., andChou, C.H. 1972. Phytoalexins: An ecological phase of phytochemistry, pp. 201–216,in J.B. Harborne (ed.). Phytochemical Ecology. Academic Press, London.

    Google Scholar 

  • Muller, C.H., anddel Moral, R. 1966. Soil toxicity induced by terpenes fromSalvia leucophylla.Bull. Torrey Bot. Club 93:332–351.

    Google Scholar 

  • Muller, C.H., Muller, W.H., andHaines, B.L. 1964. Volatile growth inhibitors produced by aromatic shrubs.Science 143:471–473.

    Google Scholar 

  • Nash, G.V. 1895. Notes on some Florida plants.Bull. Torrey Bot. Club 22:141–161.

    Google Scholar 

  • Picman, A.K. 1986. Biological activities of sesquiterpene lactones.Biochem. Syst. Ecol. 14:255–281.

    Google Scholar 

  • Putnam, A.R., andTang, C.S. (eds.). 1986a. The Science of Allelopathy. John Wiley, New York.

    Google Scholar 

  • Putnam, A.R., andTang, C.S. (eds.). 1986b. Allelopathy: State of the science, pp. 1–19,in A.R. Putnam and C.S. Tang (eds.). The Science of Allelopathy. John Wiley, New York.

    Google Scholar 

  • Rhode, H. 1922. Löslichkeit, Capillaraktivität und hämolytische Wirksamkeit bei Terpenderivaten.Biochem. Z. 130:481–496.

    Google Scholar 

  • Rice, E.L. 1984. Allelopathy, 2nd ed. Academic Press, Orlando, Florida.

    Google Scholar 

  • Richardson, D.R. 1977. Vegetation of the Atlantic Coastal Ridge of Palm Beach County, Florida.Fla. Sci. 40:281–330.

    Google Scholar 

  • Richardson, D.R. 1985. Allelopathic effects of species in the sand pine scrub of Florida. PhD dissertation. University of South Florida, Tampa, Florida.

    Google Scholar 

  • Richardson, D.R. 1988. Sand pine: An annotated bibliography.Fla. Sci. 52:65–93.

    Google Scholar 

  • Richardson, D.R., andWilliamson, G.B. 1988. Allelopathic effects of shrubs of the sand pine scrub on pines and grasses of the sandhills.For. Sci. 34:592–605.

    Google Scholar 

  • Seidell, A. 1940–41. Solubilities of Organic Compounds, 3rd ed, Vol. II. D. Van Nostrand, New York.

    Google Scholar 

  • Sigmund, W. 1924. Ueber die Einwirkung von Stoffwechsel-Endprodukten auf die Pflanzen.Biochem. Z. 146:389–419.

    Google Scholar 

  • Smyrl, T.G., andLeMaguer, M. 1980. Solubilities of terpenic essential oil components in aqueous solutions.J. Chem. Eng. Data 25:150–152.

    Google Scholar 

  • Spring, O. 1991. Trichome microsampling of sesquiterpene lactones for the use of systematic studies, pp. 319–345,in N.H. Fischer, M.B. Isman, and H.A. Stafford, (eds.). Modern Phytochemical Methods. Plenum Press, New York.

    Google Scholar 

  • Stevens, K.L., andMerrill, G.B. 1985. Sesquiterpene lactones and allelochemicals fromCentaurea species, pp. 83–98,in A.C. Thompson (ed.). The Chemistry of Allelopathy: Biochemical Interactions Among Plants. American Chemical Society Symposium Series 268. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Tang, C.S. 1986. Continuous trapping techniques for the study of allelochemicals from higher plants, pp. 113–131,in A.R. Putnam and C.-S. Tang (eds.). The Science of Allelopathy. Wiley Intersciences, New York.

    Google Scholar 

  • Tanrisever, N., Fronczek, F.R., Fischer, N.H., andWilliamson, G.B. 1987. Ceratiolin and other flavonoids fromCeratiola ericoides.Phytochemistry 26:175–179.

    Google Scholar 

  • Tanrisever, N., Fischer, N.H., andWilliamson, G.B. 1988. Menthofurans fromCalamintha ashei: Effects onSchizachyrium scoparium andLactuca sativa.Phytochemistry. 27:2523–2526.

    Google Scholar 

  • Thompson, A.C. (ed.). 1985. The Chemistry of Allelopathy. Biochemical Interactions among Plants. American Chemical Society Symposium Series 268. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Tukey, H.B., Jr. 1969. Implications of allelopathy in agricultural plant science.Bot. Rev. 35:1–16.

    Google Scholar 

  • Van der Kloet, S.P. 1986. Plant List of the Archbold Biological Station. Archbold Biological Station, Lake Placid, Florida. 74 pp.

    Google Scholar 

  • Veno, P.A. 1976. Successional relationships of five Florida plant communities.Ecology 57:498–508.

    Google Scholar 

  • Waller, G.R. (ed.). 1987. Allelochemicals: Role in Agriculture and Forestry. American Chemical Society Symposium Series 330. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Weast, R.C. (ed.). 1976. CRC Handbook of Physics and Chemistry, 57th ed. CRC Press, Cleveland, Ohio.

    Google Scholar 

  • Weast, R.C. (ed.) 1989. CRC Handbook of Physics and Chemistry, 70th ed. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Webber, H.J. 1935. The Florida scrub, a fire-fighting association.Am. J. Bot. 22:344–361.

    Google Scholar 

  • Weidenhamer, J.D., andRomeo, J.T. 1989. Allelopathic properties ofPolygonella myriophylla: Field evidence and bioassays.J. Chem. Ecol. 15:1957–1969.

    Google Scholar 

  • Weidenhamer, J.D., Morton, T.C., andRomeo, J.T. 1987. Solution volume and seed number: Overlooked factors in allelopathic bioassays.J. Chem. Ecol. 13(6):1481–1491.

    Google Scholar 

  • Weidenhamer, J.D., Hartnett, D.C., andRomeo, J.T. 1989. Density-dependent phytotoxicity: Distinguishing resource competition and allelopathic interference in plants.J. Appl. Ecol. 26:613–624.

    Google Scholar 

  • Weidenhamer, J.D., Macias, F.A., Fischer, N.H., andWilliamson, G.B. 1993. Just how insoluble are monoterpenes?J. Chem. Ecol. 19:1827–1835.

    Google Scholar 

  • Weidenhamer, J.D., Menelaou, M.A., Macias, F.A., Fischer, N.H., Richardson, D.R., andWilliamson, G.B. 1994. Allelopathic potential of menthofuran monoterpenes fromCalamintha ashei. J. Chem. Ecol. Accepted.

  • Whittaker, R.H. 1971. The chemistry of communities, pp. 10–18,in U.S. National Committee for IBP, (eds.). Biochemical Interactions Among Plants. National Academy of Science, Washington, D.C.

    Google Scholar 

  • Williamson, G.B. 1990. Allelopathy, Koch's postulates, and the neck riddle, pp. 143–162,in J.B. Grace and D. Tilman (eds.). Perspectives on Plant Competition. Academic Press, New York.

    Google Scholar 

  • Williamson, G.B., andBlack, E.M. 1981. High temperatures of forest fires under pines as a selective advantage over oaks.Nature 293:643–644.

    Google Scholar 

  • Williamson, G.B., andRichardson, D.R. 1988. Bioassays for allelopathy: Measuring treatment responses with independent controls.J. Chem. Ecol. 14:181–187.

    Google Scholar 

  • Williamson, G.B., andWeidenhamer, J.D. 1990. Bacterial degradation of juglone: Evidence against allelopathy?J. Chem. Ecol. 16(5):1739–1741.

    Google Scholar 

  • Williamson, G.B., Fischer, N.H., Richardson, D.R., andde la Pena, A. 1989. Chemical inhibition of fire-prone grasses by fire-sensitive shrub,Conradina canescens.J. Chem. Ecol. 15:1567–1577.

    Google Scholar 

  • Williamson, G.B., Obee, E.M., andWeidenhamer, J.D. 1992a. Inhibition ofSchizachyrium scoparium (Poaceae) by the allelochemical hydrocinnamic acid.J. Chem. Ecol. 18(11):2095–2105.

    Google Scholar 

  • Williamson, G.B., Richardson, D.R., andFischer, N.H. 1992b. Allelopathic mechanisms in fire-prone communities, pp. 58–75,in S.J.H. Rizvi and V. Rizvi (eds.). Allelopathy: Basic and Applied Aspects. Chapman and Hall, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to one of the pioneers in allelopathy, Cornelius H. Muller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, N.H., Williamson, G.B., Weidenhamer, J.D. et al. In search of allelopathy in the Florida scrub: The role of terpenoids. J Chem Ecol 20, 1355–1380 (1994). https://doi.org/10.1007/BF02059812

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02059812

Key Words