Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Applications of the crossing number

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

LetG be a graph ofn vertices that can be drawn in the plane by straight-line segments so that nok+1 of them are pairwise crossing. We show thatG has at mostc k nlog2k−2 n edges. This gives a partial answer to a dual version of a well-known problem of Avital-Hanani, Erdós, Kupitz, Perles, and others. We also construct two point sets {p 1,⋯,p n }, {q 1,⋯,q n } in the plane such that any piecewise linear one-to-one mappingfR 2R 2 withf(pi)=qi (1≤in) is composed of at least Ω(n 2) linear pieces. It follows from a recent result of Souvaine and Wenger that this bound is asymptotically tight. Both proofs are based on a relation between the crossing number and the bisection width of a graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M. Sharir, Quasi-planar graphs have a linear number of edges,Proc. Graph Drawing '95, Passau (F. J. Brandenburg, ed.), Lecture Notes in Computer Science, Vol. 1207, Springer-Verlag, Berlin, 1996, pp. 1–7.

    Google Scholar 

  2. N. Alon and P. Erdós, Disjoint edges in geometric graphs,Discrete Comput. Geom.,4 (1989), 287–290.

    Google Scholar 

  3. N. Alon and J. Spencer,The Probabilistic Method, Wiley, New York, 1992.

    Google Scholar 

  4. B. Aronov, R. Seidel, and D. Souvaine, On compatible triangulations of simple polygons,Comput. Geom. Theory Appl.,3 (1993), 27–36.

    Google Scholar 

  5. S. Avital and H. Hanani, Graphs,Gilyonot Lematematika,3 (1966), 2–8 (in Hebrew).

    Google Scholar 

  6. V. Capoyleas and J. Pach, A Turán-type theorem on chords of a convex polygon,J. Combin. Theory Ser. B,56 (1992), 9–15.

    Google Scholar 

  7. K. Diks, H. N. Djidjev, O. Sykora, and I. Vřto, Edge separators for planar graphs and their applications,Proc. 13th Symp. on Mathematical Foundations of Computer Science (M. P. Chytil, L. Janiga, V. Koubek, eds.), Lecture Notes in Computer Science, Vol. 324, Springer-Verlag, Berlin, 1988, pp. 280–290.

    Google Scholar 

  8. P. Erdós, On sets of distances ofn points,Amer. Math. Monthly,53 (1946), 248–250.

    Google Scholar 

  9. H. Gazit and G. L. Miller, Planar separators and the Euclidean norm,Algorithms, Proc. International Symp. SIGAL '90 (T. Asanoet al., eds.), Lecture Notes in Computer Science, Vol. 450, Springer-Verlag, Berlin, 1990, pp. 338–347.

    Google Scholar 

  10. W. Goddard, M. Katchalski, and D. J. Kleitman, Forcing disjoint segments in the plane,European J. Combin., to appear.

  11. H. Hopf and E. Pannwitz, Aufgabe No. 167,Jahresber. Deutsch. Math.-Verein.,43 (1934), 114.

    Google Scholar 

  12. Y. S. Kupitz,Extremal Problems in Combinatorial Geometry, Arhus University Lecture Note Series, No. 53, Arhus University, Arhus, 1979.

    Google Scholar 

  13. F. T. Leighton,Complexity Issues in VLSI, Foundations of Computing Series, MIT Press, Cambridge, MA, 1983.

    Google Scholar 

  14. R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs,SIAM J. Appl. Math.,36 (1979), 177–189.

    Google Scholar 

  15. G. L. Miller, Finding small simple cycle separators for 2-connected planar graphs,J. Comput. System Sci.,32 (1986), 265–279.

    Google Scholar 

  16. P. O'Donnel and M. Perles, Every geometric graph withn vertices and 3.6n—3.4 edges contains three pairwise disjoint edges, Manuscript, Rutgers University, New Brunswick, 1991.

    Google Scholar 

  17. J. Pach, Notes on geometric graph theory, in:Discrete and Computational Geometry. Papers from DIMACS Special Year (J. Goodmanet al., eds.), DIMACS Series, Vol. 6, American Mathematical Society, Providence, RI, 1991, pp. 273–285.

    Google Scholar 

  18. J. Pach and J. Törócsik, Some geometric applications of Dilworth's theorem,Discrete Comput. Geom.,12 (1994), 1–7.

    Google Scholar 

  19. A. Saalfeld, Joint triangulations and triangulation maps,Proc. 3rd Ann. ACM Symp. on Computational Geometry, 1987, pp. 195–204.

  20. D. Souvaine and R. Wenger, Constructing piecewise linear homeomorphisms,Comput. Geom. Theory Appl., to appear.

  21. J. P. Ullman,Computational Aspects of VLSI, Computer Science Press, Rockville, MD, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Di Battista and R. Tamassia.

The first author was supported by NSF Grant CCR-91-22103, PSC-CUNY Research Award 663472, and OTKA-4269. An extended abstract of this paper was presented at the 10th Annual ACM Symposium on Computational Geometry, Stony Brook, NY, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pach, J., Shahrokhi, F. & Szegedy, M. Applications of the crossing number. Algorithmica 16, 111–117 (1996). https://doi.org/10.1007/BF02086610

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02086610

Key words