Abstract
The canonical quantization of any hyperbolic symplectomorphismA of the 2-torus yields a periodic unitary operator on aN-dimenional Hilbert space,N=1/h. We prove that this quantum system becomes ergodic and mixing at the classical limit (N→∞,N prime) which can be interchanged with the time-average limit. The recovery of the stochastic behaviour out of a periodic one is based on the same mechanism under which the uniform distribution of the classical periodic orbits reproduces the Lebesgue measure: the Wigner functions of the eigenstates, supported on the classical periodic orbits, are indeed proved to become uniformly speread in phase space.
Similar content being viewed by others
References
[AA] Arnold, V.I., Avez, A.: Ergodic Problems in Classical Mechanics. New York: Benjamin, 1968
[Ap] Apostol, T.: Introduction to Analytic Number theory. Berlin, Heidelber, New York: Springer, 1976
[BH] Hannay, J. H., Berry, M.V.: Quantization of linear maps on a torus-Fresnel diffraction by a periodic grating. Physica D1, 267–291 (1980)
[BV] Bartuccelli, F., Vivaldi, F.: Ideal Orbits of Toral Automorphisms. Physica D39, 194 (1989)
[BNS] Benatti, R., Narnhofer, H., Sewell, G. L.: A non-commutative version of the Arnold cat map. Lett. Math. Phys.21, 157–172 (1991)
[CdV] Colin de Verdiere, Y.: Ergodicité et functions propres du Laplacien. Commun. Math. Phys.102, 497–502 (1985)
[Ch] Chandrasekharan, K.: Introduction to Analytic Number Theory. Berlin, Heidelberg, New York: Springer, 1968
[Da] Davenport, H.: On certain exponential sums. Reine, J. Angewandte Mathematik78, 158–176 (1932)
[DE] Degli Esposti, M.: Quantization of the orientation preserving automorphisms of the torus. Ann. Inst. Pincaré, H.58, 323–341 (1993)
[De1] Deligne, P.: La conjecture de Weil I. Pub. Math. I.H.E.S.48, 273–308 (1974)
[De2] Deligne, P.: Cohomologie Etale. Lecture Notes in Mathematics569, (1974)
[E1] Eckhardt, B.: Exact eigenfunctions for a quantized map. J. Phys. A19, 1823–1833 (1986)
[E2] Eckhardt, B.: Quantum mechanics of classically non-integrable systems. Phys. Reports163, 205–297 (1988)
[F] Folland, G.: Harmonic Analysis in Phase Space, Princeton: Princeton University Press, 1988
[FRM] Ford, J., Mantica, G., Ristov, G.H.: The Arnol'd cat: Failure of the correspondence principle. Physica D25, 105–135 (1991)
[H] Hasse, H.: Number Theory, Berlin, Heidelberg, New York: Springer, 1980
[HMR] Helffer, B., Martinez, A., Robert, D.: Ergodicité et limite semi-classique. Commun. Math. Phys.09, 313–326 (1987)
[I] Isola, S.: ξ-function and distribution of periodic orbits of toral automorphisms. Europhys. Lett.11, 517–522 (1990)
[Ka1] Katz, N.: Gauss Sums, Kloosterman Sums, and Monodromy Groups. Princeton, NJ: Princeton University Press, 1988
[Ka2] Katz, N. Sommes Exponentielles. Asterisque79, 1980
[Ke1] Keating, J.: Ph. D. thesis, University of Bristol (1989)
[Ke2] Keating, J.: Asymptotic properties of the periodic orbits of the cat map. Nonlinearity4, 277–307 (1991)
[Ke3] Keating, J.: The cat maps: Quantum mechanics and classical motion. Nonlinearity4, 309–341 (199)
[Kn] Knabe, S.: On the quantization of the Arnold cat map. J. Phys. A23, 2013–2025 (1990)
[LV] Leboeuf, J., Voros, A.: Chaos revealing multiplicative represenation of quantum eigenstates. J. Phys. A23, 1765–1773 (1990)
[M] Mañe, R.: Ergodic Theory and Differentiable Dynamics. Berlin, Heidelberg, New York: Springer, 1987
[N] Narnhofer, H.: Quantized Arnold cats can be entropicK-systems. J. Math. Phys.33, 1502–1510 (1992)
[PV] Percival, I., Vivaldi, F.: Arithmetical properties of strongly chaotic motions. Physica D25, 105–130 (1987)
[PP] Parry, W., Pollicott, M.: Zea functions and the periodic orbit structure of hyperbolic dynamics, Astérisque187–188 (1990)
[RM] Ram Murthy, M.: Artin's conjecture for primitive roots. Mathematical Intelligencer10, 59–70 (1988)
[S] Schnirelman, A.: Ergodic properties of the eigenfunctions. Usp. Math. Nauk29, 181–182 (1974)
[Sa] Sarnak, P.: Arithmetic Quantum Chaos. Tel Aviv Lectures 1993 (to apper)
[Sc] Schmidt, W.: Equations over finite fields. An elementary approach. Vol.536, Lecture Notes in Mathematis, 1976
[VN] Von Neumann, J.: Beweis des Ergoidensatzes und desH-Theorems in der Neuen Mechanik. Zschr. f. Physik57, 30–70 (1929)
[Z] Zelditch, S.: Uniform distribution of eigenfunction on compact hyperbolic surfaces. Duke Math. J.55, 919–941 (1987)
Author information
Authors and Affiliations
Additional information
Communicated by Ya. G. Sinai
Rights and permissions
About this article
Cite this article
Esposti, M.D., Graffi, S. & Isola, S. Classical limit of the quantized hyperbolic toral automorphisms. Commun.Math. Phys. 167, 471–507 (1995). https://doi.org/10.1007/BF02101532
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02101532