Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Gravity's role in Quantum State Reduction

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The stability of a quantum superposition of two different stationary mass distributions is examined, where the perturbing effect of each distribution on the space-time structure is taken into account, in accordance with the principles of general relativity. It is argued that the definition of the time-translation operator for the superposed space-times involves an inherent ill-definedness, leading to an essential uncertainty in the energy of the superposed state which, in the Newtonian limit, is proportional to the gravitational self-energyE Δ of the difference between the two mass distributions. This is consistent with a suggested finite lifetime of the order of ħ/E Δ for the superposed state, in agreement with a certain proposal made by the author for a gravitationally induced spontaneous quantum state reduction, and with closely related earlier suggestions by Diósi and by Ghirardiet al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anandan, J. (1994).Gen. Rel. Grav. 26, 125.

    Google Scholar 

  2. Anandan, J. (1995). “Gravitational phase operator and cosmic strings”. To appear inPhys. Rev. D.

  3. Bell, J. S. (1990).Physics World 3, 33.

    Google Scholar 

  4. Bialynicki-Birula, I., and Mycielski, J. (1976).Ann. Phys. (NY) 100, 62.

    Article  Google Scholar 

  5. Bohm, D. (1952).Phys. Rev. 85, 166.

    Article  Google Scholar 

  6. Bohm, D., and Hiley, B. (1994).The Undivided Universe (Routledge, London).

    Google Scholar 

  7. Cartan, É. (1923,1924). “Sur les variétés à connexion affine et la théorie de la relativité generalisée”,Ann. École Norm. Sup. 40, 325,41, 1.

    Google Scholar 

  8. Christian, J. (1995). “Definite events in Newton-Cartan quantum gravity” Oxford University preprint.

  9. de Broglie, I. (1956).Tentative d'Interpretation Causale et Nonlineaire de la Mechanique Ondulatoire (Gauthier-Villars, Paris).

    Google Scholar 

  10. DeWitt, B. S., and Graham, R. D. (eds.) (1973).The Many Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton).

    Google Scholar 

  11. Diósi, L. (1989).Phys. Rev. A 40, 1165.

    Article  Google Scholar 

  12. Ehlers, J. (1991). InClassical Mechanics and Relativity: Relationship and Consistency (Int. Conf. in memory of Carlo Cataneo, Elba 1989), G. Ferrarese, ed. (Monographs and Textbooks in Physical Science, Lecture Notes 20, Bibliopolis, Naples).

    Google Scholar 

  13. Everett, H. (1957).Rev. Mod. Phys. 29, 454.

    Article  Google Scholar 

  14. Friedrichs, K. (1927).Math. Ann. 98, 566.

    Article  MathSciNet  Google Scholar 

  15. Gell-Mann, M., and Hartle, J. B. (1993).Phys. Rev. D 47, 3345.

    Google Scholar 

  16. Ghirardi, G. C., Rimini, A. and Weber, T. (1986).Phys. Rev. D 34, 470.

    Google Scholar 

  17. Ghirardi, G. C., Grassi, R., and Rimini, A. (1990).Phys. Rev. A 42, 1057.

    Google Scholar 

  18. Griffiths, R. (1984).J. Stat. Phys. 36, 219.

    Article  Google Scholar 

  19. Haag, R. (1992).Local Quantum Physics: Fields, Particles, Algebras (Springer-Verlag, Berlin).

    Google Scholar 

  20. Károlyházy, F. (1966).Nuovo Cimento A 42, 390.

    Google Scholar 

  21. Károlyházy, F. (1974).Magyar Fizikai Polyoirat 12, 24.

    Google Scholar 

  22. Károlyházy, F., Frenkel, A., and Lukács, B. (1986). InQuantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Oxford University Press, Oxford), p. 109.

    Google Scholar 

  23. Kibble, T. W. B. (1981). InQuantum Gravity 2: a Second Oxford Symposium, C. J. Isham, R. Penrose and D. W. Sciama, eds. (Oxford University Press, Oxford), p.63.

    Google Scholar 

  24. Komar, A. B. (1969).Int. J. Theor. Phys. 2, 157.

    Article  Google Scholar 

  25. Omnès, R. (1992).Rev. Mod. Phys. 64, 339.

    Article  Google Scholar 

  26. Page, D. N., and Geilker, C. D. (1981).Phys. Rev. Lett. 47, 979.

    Article  Google Scholar 

  27. Pearle, P. (1985). InQuantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Oxford University Press, Oxford), p.84.

    Google Scholar 

  28. Pearle, P. (1989).Phys. Rev. A 39, 2277.

    Google Scholar 

  29. Pearle, P., and Squires, E. J. (1995). “Gravity, energy conservation and parameter values in collapse models”. Durham University preprint DTP/95/13.

  30. Penrose, R. (1981). InQuantum Gravity 2: A Second Oxford Symposium, C. J. Isham, R. Penrose and D. W. Sciama, eds. (Oxford University Press, Oxford), p.244.

    Google Scholar 

  31. Penrose, R. (1986). InQuantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Oxford University Press, Oxford), p.129.

    Google Scholar 

  32. Penrose, R. (1987). In300 Years of Gravity, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge), p. 17.

    Google Scholar 

  33. Penrose, R. (1989).The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics (Oxford University Press, Oxford).

    Google Scholar 

  34. Penrose, R. (1993). InGeneral Relativity and Gravitation 13. Part 1: Plenary Lectures, R. J. Gleiser, C. N. Kozameh and O. M. Moreschi, eds. (IOPP, Bristol/Philadelphia), p. 179.

    Google Scholar 

  35. Penrose, R. (1994). InFundamental Aspects of Quantum Theory, J. Anandan and J. L. Safko, eds. (World Scientific, Singapore), p.238.

    Google Scholar 

  36. Penrose, R. (1994).Shadows of the Mind; An Approach to the Missing Science of Consciousness (Oxford University Press, Oxford).

    Google Scholar 

  37. Percival, I. C. (1995).Proc. R. Soc. Lond. A 451, 503.

    Google Scholar 

  38. Squires, E. (1990).Phys. Lett. A 145, 67.

    Google Scholar 

  39. Squires, E. (1992).Found. Phys. Lett. 5, 279.

    Article  Google Scholar 

  40. Trautman, A. (1965). InLectures on General Relativity (Brandeis 1964 Summer Inst. on Theoretical Physics), vol. I, by A. Trautman, F. A. E. Pirani and H. Bondi (Prentice-Hall, Englewood Cliffs, NJ), p.7.

    Google Scholar 

  41. Weinberg, S. (1989).Phys. Rev. Lett. 62, 485.

    Article  Google Scholar 

  42. Wigner, E. P. (1961). InThe Scientist Speculates, I. J. Good, ed. (Heinemann, London); reprinted in E. Wigner (1967).Symmetries and Reflections (Indiana University Press, Bloomington) and in 1983 in QuantumTheory and Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton).

    Google Scholar 

  43. Zurek, W. H. (1991).Physics Today 44, 36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penrose, R. On Gravity's role in Quantum State Reduction. Gen Relat Gravit 28, 581–600 (1996). https://doi.org/10.1007/BF02105068

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02105068

Keywords