Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Proximal decomposition for multicommodity flow problems with convex costs

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper deals with the minimization of average packet delay modelled as multicommodity flow problems. We use an approach based on proximal techniques in convex programming. This new decomposition method relies on the proximal point algorithm which allows to split a multicommodity flow problem into several single flow problems with quadratic cost functions. When each regularized subproblem is solved, we project its solution on an appropriate subspace which represents the coupling constraints, i.e. the capacity bound for the sum of the flows. We present a numerical application of this method on a real data network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. A. Balakrishnan and K. Altinkemer, Using a hop-constrained model to generate alternative communication network design, ORSA J. Comp. 4(1992)192–205.

    Google Scholar 

  2. D.P. Bertsekas, P.A. Hossein and P. Tseng, Relaxation methods for network flow problems with convex arc costs, SIAM J. Contr. Optim. 25(1987)1219–1243.

    Google Scholar 

  3. D.P. Bertsekas and J.N. Tsitsiklis,Parallel and Distributed Computation, Int. Ed. (Prentice-Hall, 1989).

  4. D.P. Bertsekas and R.G. Gallager,Data Networks (Prentice-Hall, 1987).

  5. D.P. Bertsekas and E.M. Gafni, Projected Newton methods and optimization of multicommodity flows, IEEE Trans. Automat. Contr. AC-28(1983)1090–1096.

    Google Scholar 

  6. H. Brezis, Opérateurs maximaux monotones,Mathematics Studies 5 (North-Holland, 1973).

  7. L. Fratta, M. Gerla and L. Kleinrock, The flow deviation method: An approach to store-and-forward communication network design, Networks 3(1973)97–133.

    Google Scholar 

  8. M. Fukushima, A nonsmooth optimization approach to nonlinear multicommodity network flow problems, J. Oper. Res. Soc. Jpn. 27(1984)151–177.

    Google Scholar 

  9. R.G. Gallager, A minimum delay routing algorithm using distributed computation, IEEE Trans. Commun. COM-25(1977)73–85.

    Google Scholar 

  10. K.L. Jones, I.J. Lustig, J.M. Farvolden and W.B. Powell, Multicommodity network flows: The impact of formulation on decomposition, Math. Prog. Ser. B62(1993)95–118.

    Google Scholar 

  11. J.L. Kennington, A survey of linear cost multicommodity network flows, Oper. Res. 26(1978) 209–236.

    Google Scholar 

  12. L. Kleinrock,Communications, Nets, Stochastic Message Flow and Delay (Dover, 1972).

  13. P. Mahey, S. Oualibouch and D.T. Pham, Proximal decomposition on the graph of a maximal monotone operator, Int. Report ARTEMIS/IMAG, RR 877-M (1992), to appear in SIAM J. Optim.

  14. B. Martinet, Algorithmes pour la résolution de problèmes d'optimisation et de minimax, Thèse d'Etat, Université de Grenoble (1972).

  15. M. Minoux, Résolution des problèmes de multiflots en nombres entiers dans les grands réseaux, RAIRO 3(1975)21–40.

    Google Scholar 

  16. M. Minoux, Multiflots de coût minimal avec fonctions de coût concaves, Ann. Télécom. 31(1976) 77–92.

    Google Scholar 

  17. M. Minoux and J.Y. Serreault, Synthèse optimale d'un réseau de télécommunications avec contraintes de sécurité, Ann. Télécom. 36(1981)211–230.

    Google Scholar 

  18. J.J. Moreau, Proximité et dualité dans un espace Hilbertien, Bull. Soc. Math. France 93(1965)273–299.

    Google Scholar 

  19. H. Nagamochi, Studies on multicommodity flows in directed networks, Eng. Dr. Thesis, Kyoto University (1988).

  20. R.T. Rockafellar, Monotone operators and the proximal point algorithm in convex programming, SIAM J. Contr. Optim. 14(1976)866–898.

    Google Scholar 

  21. R.T. Rockafellar,Convex Analysis (Princeton University Press, 1970).

  22. J.E. Spingarn, Applications of the method of partial inverse to convex programming: Decomposition, Math. Progr. 32(1985)199–223.

    Google Scholar 

  23. T.E. Stern, A class of decentralized routing algorithms using relaxation, IEEE Trans. Commun. COM-25(1977)1092–1102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chifflet, J., Mahey, P. & Reynier, V. Proximal decomposition for multicommodity flow problems with convex costs. Telecommunication Systems 3, 1–10 (1994). https://doi.org/10.1007/BF02110041

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110041

Keywords