Abstract
This paper deals with the minimization of average packet delay modelled as multicommodity flow problems. We use an approach based on proximal techniques in convex programming. This new decomposition method relies on the proximal point algorithm which allows to split a multicommodity flow problem into several single flow problems with quadratic cost functions. When each regularized subproblem is solved, we project its solution on an appropriate subspace which represents the coupling constraints, i.e. the capacity bound for the sum of the flows. We present a numerical application of this method on a real data network.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
A. Balakrishnan and K. Altinkemer, Using a hop-constrained model to generate alternative communication network design, ORSA J. Comp. 4(1992)192–205.
D.P. Bertsekas, P.A. Hossein and P. Tseng, Relaxation methods for network flow problems with convex arc costs, SIAM J. Contr. Optim. 25(1987)1219–1243.
D.P. Bertsekas and J.N. Tsitsiklis,Parallel and Distributed Computation, Int. Ed. (Prentice-Hall, 1989).
D.P. Bertsekas and R.G. Gallager,Data Networks (Prentice-Hall, 1987).
D.P. Bertsekas and E.M. Gafni, Projected Newton methods and optimization of multicommodity flows, IEEE Trans. Automat. Contr. AC-28(1983)1090–1096.
H. Brezis, Opérateurs maximaux monotones,Mathematics Studies 5 (North-Holland, 1973).
L. Fratta, M. Gerla and L. Kleinrock, The flow deviation method: An approach to store-and-forward communication network design, Networks 3(1973)97–133.
M. Fukushima, A nonsmooth optimization approach to nonlinear multicommodity network flow problems, J. Oper. Res. Soc. Jpn. 27(1984)151–177.
R.G. Gallager, A minimum delay routing algorithm using distributed computation, IEEE Trans. Commun. COM-25(1977)73–85.
K.L. Jones, I.J. Lustig, J.M. Farvolden and W.B. Powell, Multicommodity network flows: The impact of formulation on decomposition, Math. Prog. Ser. B62(1993)95–118.
J.L. Kennington, A survey of linear cost multicommodity network flows, Oper. Res. 26(1978) 209–236.
L. Kleinrock,Communications, Nets, Stochastic Message Flow and Delay (Dover, 1972).
P. Mahey, S. Oualibouch and D.T. Pham, Proximal decomposition on the graph of a maximal monotone operator, Int. Report ARTEMIS/IMAG, RR 877-M (1992), to appear in SIAM J. Optim.
B. Martinet, Algorithmes pour la résolution de problèmes d'optimisation et de minimax, Thèse d'Etat, Université de Grenoble (1972).
M. Minoux, Résolution des problèmes de multiflots en nombres entiers dans les grands réseaux, RAIRO 3(1975)21–40.
M. Minoux, Multiflots de coût minimal avec fonctions de coût concaves, Ann. Télécom. 31(1976) 77–92.
M. Minoux and J.Y. Serreault, Synthèse optimale d'un réseau de télécommunications avec contraintes de sécurité, Ann. Télécom. 36(1981)211–230.
J.J. Moreau, Proximité et dualité dans un espace Hilbertien, Bull. Soc. Math. France 93(1965)273–299.
H. Nagamochi, Studies on multicommodity flows in directed networks, Eng. Dr. Thesis, Kyoto University (1988).
R.T. Rockafellar, Monotone operators and the proximal point algorithm in convex programming, SIAM J. Contr. Optim. 14(1976)866–898.
R.T. Rockafellar,Convex Analysis (Princeton University Press, 1970).
J.E. Spingarn, Applications of the method of partial inverse to convex programming: Decomposition, Math. Progr. 32(1985)199–223.
T.E. Stern, A class of decentralized routing algorithms using relaxation, IEEE Trans. Commun. COM-25(1977)1092–1102.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Chifflet, J., Mahey, P. & Reynier, V. Proximal decomposition for multicommodity flow problems with convex costs. Telecommunication Systems 3, 1–10 (1994). https://doi.org/10.1007/BF02110041
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02110041