Abstract
Using the exponential Euler spline, restricted on the unit circle, we sketch a unified approach to the periodic spline interpolation with shifted interpolation nodes. Mainly we are interested in the optimal choice of the shift parameter τ such that the corresponding interpolatory matrix possesses minimal condition or such that the related interpolation operator has minimal norm. We show that τ=0 is optimal in both cases. This improves known results of Merz, Reimer-Siepmann and Richards.
Similar content being viewed by others
References
M. Abramowitz and J.A. Stegun,Handbook of Mathematical Functions (Dover, New York, 1965).
P.J. Davis,Circulant Matrices (Wiley, New York, 1979).
K. Jetter, S.D. Riemenschneider and N. Sivakumar, Schoenberg's exponential Euler spline curves, Proc. Roy. Soc. Edinburgh 118A (1991) 21–33.
M. Marsden and R. Mureika, Cardinal spline interpolation inL 2, Illinois J. Math. 19 (1975) 145–147.
M.J. Marsden, F.B. Richards and S.D. Riemenschneider, Cardinal spline interpolation operators onl p data, Indiana Univ. Math. J. 24 (1975) 677–689.
M.J. Marsden, F.B. Richards and S.D. Riemenschneider, Erratum to “Cardinal spline interpolation operators onl p data”, Indiana Univ. Math. J. 25 (1976) 919.
G. Merz, Interpolation mit periodischen Spline-Funktionen I, J. Approx. Theory 30 (1980) 11–19.
G. Merz, Interpolation mit periodischen Spline-Funktionen III, J. Approx. Theory 34 (1982) 226–236.
H. ter Morsche, On the existence and convergence of interpolating periodic spline functions of arbitrary degree, in:Spline-Funktionen, eds. K. Böhmer, G. Meinardus and W. Schempp (Bibliographisches Institut, Mannheim, 1974) pp. 197–214.
M. Reimer and D. Siepmann, An elementary algebraic representation of polynomial spline interpolants for equidistant lattices and its condition, Numer. Math. 49 (1986) 55–65.
F.B. Richards, Best bounds for the uniform periodic spline interpolation operator, J. Approx. Theory 7 (1973) 302–317.
F.B. Richards, Uniform spline operators inL 2, Illinois J. Math. 18 (1974) 512–521.
I.J. Schoenberg, Cardinal interpolation and spline functions, J. Approx. Theory 2 (1969) 167–206.
Author information
Authors and Affiliations
Additional information
Communicated by C.A. Micchelli
Rights and permissions
About this article
Cite this article
Plonka, G. Optimal shift parameters for periodic spline interpolation. Numer Algor 6, 297–316 (1994). https://doi.org/10.1007/BF02142676
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02142676