Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Finite element methods on piecewise equidistant meshes for interior turning point problems

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider linear second order singularly perturbed two-point boundary value problems with interior turning points. Piecewise linear Galerkin finite element methods are constructed on various piecewise equidistant meshes designed for such problems. These methods are proved to be convergent, uniformly in the singular perturbation parameter, in a weighted energy norm and the usualL 2 norm. Supporting numerical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.E. Berger, H. Han and R.B. Kellogg, A priori estimates and analysis of a numerical method for a turning point problem, Math. Comp. 42 (1984) 465–492.

    Google Scholar 

  2. C. Clavero and F. Lisbona, Uniformly convergent finite difference methods for singularly perturbed problems with turning points, Numer. Algor. 4 (1993) 339–359.

    Google Scholar 

  3. P.A. Farrell, Sufficient conditions for the uniform convergence of a difference scheme for a singularly perturbed turning point problem, SIAM J. Numer. Anal. 25 (1988) 618–643.

    Google Scholar 

  4. P.A. Farrell and E.C. Gartland, Jr., A uniform convergence result for a turning point problem,Proc. BAIL V Conf., Shanghai (1988), eds. B. Guo, J.J.H. Miller and Z. Shi (Boole Press, Dublin, 1988) pp. 127–132.

    Google Scholar 

  5. P.A. Farrell and A. Hegarty, On the determination of the order of uniform convergence,Proc. 13th IMACS World Congress on Computation and Applied Mathematics, eds. R. Vichnevetsky and J.J.H. Miller (IMACS, 1991) pp. 501–502.

  6. E.C. Gartland, Jr., Graded-mesh difference schemes for singularly perturbed two-point boundary value problems, Math. Comp. 51 (1988) 631–657.

    Google Scholar 

  7. P. Lin and G. Sun, A uniformly second-order accurate difference scheme for a turning point problem without resonance,Proc. BAIL V Conf., Shanghai (1988), eds. B. Guo, J.J.H. Miller and Z. Shi (Boole Press, Dublin, 1988) pp. 209–211.

    Google Scholar 

  8. G.I. Shishkin, Grid approximation of singularly perturbed parabolic equations with internal layers, Sov. J. Numer. Anal. Math. Mod. 3 (1988) 393–407.

    Google Scholar 

  9. D.R. Smith,Singular-Perturbation Theory (An Introduction with Applications) (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  10. M. Stynes, An adaptive uniformly convergent numerical method for a singularly perturbed boundary value problem, SIAM J. Numer. Anal. 26 (1989) 442–455.

    Google Scholar 

  11. M. Stynes and E. O'Riordan, An analysis of singularly perturbed two-point boundary value problems with turning points,Proc. Conf. on Discretization Methods of Singular Perturbations and Flow Problems, ed. L. Tobiska, (Technical University “Otto von Guericke”, Magdeburg, Germany, 1989) pp. 81–88.

    Google Scholar 

  12. M. Stynes and E. O'Riordan, An analysis of a singularly perturbed two-point boundary value problem using only finite element techniques, Math. Comp. 56 (1991) 663–675.

    Google Scholar 

  13. G. Sun and M. Stynes, Finite element methods for singularly perturbed high order elliptic twopoint boundary value problems II: convection-diffusion type, IMA J. Numer. Anal., to appear.

  14. X. Sun, A second order uniform difference scheme for a singularly perturbed turning point problem, Appl. Math. Mech. (English Ed.) 13 (1992) 143–147.

    Google Scholar 

  15. R. Vulanović, A second order uniform numerical method for a turning point problem, Zb. Rad. Prir.-Mat. Fak. Univ. Novom Sadu ser. Mat. 18 (1988) 17–30.

    Google Scholar 

  16. R. Vulanović and P.A. Farrell, Analysis of multiple turning point problems, Preprint, Institute of Mathematics, University of Novi Sad (1991).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Gasca

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, G., Stynes, M. Finite element methods on piecewise equidistant meshes for interior turning point problems. Numer Algor 8, 111–129 (1994). https://doi.org/10.1007/BF02145699

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02145699

AMS subject classification