Abstract
We address the problem of connecting line segments to form the boundary of a simple polygon—a simple circuit. However, not every set of segments can be so connected. We present anO(n logn)-time algorithm to determine whether a set of segments, constrained so that each segment has at least one endpoint on the boundary of the convex hull of the segments, admits a simple circuit. Furthermore, this technique can also be used to compute a simple circuit of minimum perimeter, or a simple circuit that bounds the minimum area, with no increase in computational complexity.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
D. Avis and D. Rappaport, Computing monotone simple circuits in the plane, inComputational Morphology (G. Toussaint, ed.), 13–23, North-Holland, Amsterdam (1988).
J. L. Bentley and T. A. Ottmann, Algorithms for reporting and counting geometric intersections,IEEE Trans. Comput. 28, 9 (1979), 643–647.
N. Friedman, Some results on the effect of arithmetics on comparison problems,Proc. 13th IEEE Symp. Switching Automata Theory (1972), 139–142.
M. R. Garey, D. S. Johnson, and R. E. Tarjan, The planar Hamiltonian circuit problem is NP-complete,SIAM J. Comput. 5 (1976), 704–714.
R. L. Graham, An efficient algorithm for determining the convex hull of a finite planar set,Inform. Process. Lett. 1 (1972), 132–133.
J. E. Hopcroft and R. M. Karp, Ann 5/2 algorithm for maximum matchings in bipartite graphs,SIAM J. Comput. 2 (1973), 225–231.
R. M. Karp, On the complexity of combinatorial problems,Networks 5 (1975), 45–68.
D. Kirkpatrick and R. Seidel, The ultimate convex hull algorithm,SIAM J. Comput. 15 (1986), 287–299.
M. McQueen and G. T. Toussaint, On the ultimate convex hull algorithm in practice,Pattern Recognition Lett. 3 (1985), 29–34.
D. Rappaport, The Complexity of Computing Simple Circuits in the Plane, Ph.D. thesis, McGill University (1986).
D. Rappaport, Computing simple circuits from a set of line segments is NP-complete,Proc. 3rd ACM Symp. Comput. Geom. (1987), 322–330.
M. I. Shamos, Geometric complexity,Proc. 7th ACM Annu. Symp. Theory Comput. (1975), 224–233.
M. I. Shamos and D. Hoey, Geometric intersection problems,Proc. 17th IEEE Annu. Symp. Found. Comput. Sci. (1976), 208–215.
S. Suri, Personal communication (1986).
R. E. Tarjan and C. Van Wyk, AnO(n log logn) algorithm for triangulating a simple polygon,SIAM J. Comput. 17 (1988), 143–178.
G. T. Toussaint, A historical note on convex hull finding algorithms,Pattern Recognition Lett. 3 (1985), 21–28.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Rappaport, D., Imai, H. & Toussaint, G.T. Computing simple circuits from a set of line segments. Discrete Comput Geom 5, 289–304 (1990). https://doi.org/10.1007/BF02187791
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02187791