Abstract
In this paper we look at some iterative interpolation schemes and investigate how they may be used in data compression. In particular, we use the pointwise polynomial interpolation method to decompose discrete data into a sequence of difference vectors. By compressing these differences, one can store an approximation to the data within a specified tolerance using a fraction of the original storage space (the larger the tolerance, the smaller the fraction).
We review the iterative interpolation scheme, describe the decomposition algorithm and present some numerical examples. The numerical results are that the best compression rate (ratio of non-zero data in the approximation to the data in the original) is often attained by using cubic polynomials and in some cases polynomials of higher degree.
Similar content being viewed by others
References
E. Arge and M. DÆhlen, Data dependent subdivision, preprint (1992).
C. Chui,An Introduction to Wavelets (Academic Press, Boston, 1992).
G. Deslauriers and S. Dubuc, Symmetric iterative interpolation processes, Constr. Appr. 5 (1989) 49–68.
R.A. deVore, B. Jawerth and B. Lucier, Surface compression, preprint (1991).
R.A. deVore, B. Jawerth and B. Lucier, Image processing through wavelet transform coding, preprint (1991).
S. Dubuc, Interpolation through an iterative scheme, J. Math. Anal. Appl. 114 (1986) 185–204.
N. Dyn, D. Levin and J. Gregory, A 4-point interpolatory subdivision scheme for curve design, Comp. Aided Geom. Des. 4 (1987) 257–268.
M. DÆhlen and T. Lyche, Decomposition of splines,Mathematical Methods, CAGD and Image Processing, eds. T. Lyche and L. Schumaker (Academic Press, Boston, 1992) pp. 135–160.
M.S. Floater, Pointwise polynomial interpolation, Research Report, SINTEF-SI, Oslo (1992).
T.A. Foley, Interpolation and approximation of 3-D and 4-D scattered data, Comp. Math. App. 13 (1987) 711–740.
S. Mallat, Multiresolution approximations and wavelet orthonormal bases ofL 2(ℓ), Trans. Amer. Math. Soc. 315 (1989) 69–87.
Y. Meyer,Ondelettes et Opérateurs (Hermann, Paris, 1990).
M.J.D. Powell,Approximation Theory and Methods (Cambridge University Press, Cambridge, 1981).
O. Rioul, Simple regularity criteria for subdivision schemes, SIAM J. Math. Anal. (1992), to appear.
Author information
Authors and Affiliations
Additional information
This work was supported by The Royal Norwegian Council for Scientific and Industrial Research (NTNF).
Rights and permissions
About this article
Cite this article
DÆhlen, M., Floater, M. Iterative polynomial interpolation and data compression. Numer Algor 5, 165–177 (1993). https://doi.org/10.1007/BF02215679
Issue Date:
DOI: https://doi.org/10.1007/BF02215679