Abstract
This paper deals with the convergence analysis of implicit Runge-Kutta methods as applied to stiff, semilinear systems of the form\(\dot U\) (t)=QU(t)+g(t, U(t)). A criterion is developed which determines whether the order of optimalB-convergence is at least equal to the stage order or one order higher. This criterion is studied for a number of interesting classes of methods.
Zusammenfassung
Dieser Aufsatz befaßt sich mit der Analyse der Konvergenz von impliziten Runge-Kutta Verfahren für steife, semi-lineare Systeme der Form\(\dot U\) (t)=QU(t)+g(t, U(t)). Ein Kriterium wird entwickelt, welches entscheidet, ob die Ordnung der optimalenB-Konvergenz mindestens gleich der Stufenordnung oder um eine Ordnung höher ist. Dieses Kriterium wird untersucht für eine Zahl von interessanten Klassen von Verfahren.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Burrage, K.: Stability and efficiency properties of implicit Runge-Kutta methods. Ph. D. Thesis, Dept. of Math., Univ. of Auckland, 1978.
Burrage, K.: A special family of Runge-Kutta methods for solving stiff differential equations. BIT18, 22–41 (1978).
Butcher, J. C.: OnA-stable implicit Runge-Kutta methods. BIT17, 375–378 (1977).
Crouzeix, M., Raviart, P. A.: Méthodes de Runge-Kutta. Unpublished lecture notes. Université de Rennes, 1980.
Dekker, K., Kraaijevanger, J. F. B. M., Spijker, M. N.: The order ofB-convergence of the Gaussian Runge-Kutta method. Computing (this issue).
Dekker, K., Verwer, J. G.: Stability of Runge-Kutta methods for stiff nonlinear differential equations. Amsterdam: North-Holland 1984.
Frank, R., Schneid, J., Ueberhuber, C. W.: The concept ofB-convergence. SIAM J. Numer. Anal.18, 753–780 (1981).
Frank, R., Schneid, J., Ueberhuber, C. W.: Stability properties of implicit Runge-Kutta methods. SIAM J. Numer. Anal.22, 497–514 (1985).
Frank, R., Schneid, J., Ueberhuber, C. W.: Order results for implicit Runge-Kutta methods applied to stiff systems. SIAM J. Numer. Anal.22, 515–534 (1985).
Hairer, E., Bader, G., Lubich, Ch.: On the stability of semi-implicit methods for ordinary differential equations. BIT22, 211–232 (1982).
Hundsdorfer, W. H.: The numerical solution of nonlinear stiffinitial value problems — an analysis of one-step methods. CWI Tract 12, Amsterdam 1985.
Hundsdorfer, W. H., Spijker, M. N.: On the algebraic equations in implicit Runge-Kutta methods. SIAM J. Numerical Anal. (to appear).
Kraaijevanger, J. F. B. M.:B-convergence of the implicit midpoint rule and the trapezoidal rule. BIT (to appear).
Nørsett, S. P.: Semi-explicit Runge-Kutta methods. Report Math. and Comp. No. 6/74, Dept. of Math., Univ. of Trondheim, 1974.
Nørsett, S. P.:C-polynomials for rational approximations to the exponential function. Numer. Math.25, 39–56 (1975).
Prothero, A., Robinson, A.: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Comp.28, 145–162 (1974).
Stetter, H. J.: ZurB-Konvergenz der impliziten Trapez- und Mittelpunktregel, unpublished note.
Verwer, J. G.: Convergence and order reduction of diagonally implicit Runge-Kutta schemes in the method of lines. Proc. Dundee 1985, D. F. Griffiths (ed.), Pitman Publ. Co. (to appear).
Wanner, G., Hairer, E., Nørsett, S. P.: Order stars and stability theorems. BIT18, 475–489 (1978).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Burrage, K., Hundsdorfer, W.H. & Verwer, J.G. A study of B-convergence of Runge-Kutta methods. Computing 36, 17–34 (1986). https://doi.org/10.1007/BF02238189
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02238189