Abstract
We present an estimate for the Hausdorff distance between the set of solutions of a differential inclusion and the set of solutions of its Euler discrete approximation, using an averaged modulus of continuity for multifunctions. A computational procedure to obtain a certain solution of the discretized inclusion is proposed.
Zusammenfassung
Eine Abschätzung der Hausdorff-Distanz zwischen der Menge aller Lösungen einer Differentialeinschließung und der Eulerschen Approximation dieser Einschließung wird vorgelegt, wobei ein Stetigkeitsmodul für Multifunktionen angewendet wird. Eine numerische Prozedur zur Auffindung einer gewissen Lösung der diskretisierten Einschließung wird vorgeschlagen.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Clarke, F. H.: Nonsmooth Analysis and Optimization. J. Wiley 1983.
Taubert, K.: Converging multistep methods for initial value problems involving multivalued maps. Computing27, 123 (1981).
Pshenichny, B. N.: Convex Analysis and Optimization. Moscow: Nauka 1980 (russian).
Dontchev, A. L.: Equivalent perturbations and approximations in optimal control. C. R. Bulg. Acad. Sci.39, 27 (1986).
Mordukhovič, B. S.: A contribution to the theory of finite difference approximations to optimal control problems. Doklady AN BSSR30, 1064 (1986) (russian).
Sendov, Bl., Popov, V.: Averaged Moduli of Smoothness. Sofia: Publ. house Bulg. Acad. Sci. 1983 (bulg.).
Andreev, A. S., Popov, V. A., Sendov, Bl.: Error estimates for numerical solving of ODE. J. Comp. Math. and Math. Phys.21, 635 (1981) (russian).
Author information
Authors and Affiliations
Additional information
This work is partially supported by the Committee of Science under Grant 127.
Rights and permissions
About this article
Cite this article
Dontchev, A.L., Farkhi, E.M. Error estimates for discretized differential inclusions. Computing 41, 349–358 (1989). https://doi.org/10.1007/BF02241223
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02241223