Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Error estimates for discretized differential inclusions

Eine Fehlerabschätzung für diskretisierte Differentialeinschließungen

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We present an estimate for the Hausdorff distance between the set of solutions of a differential inclusion and the set of solutions of its Euler discrete approximation, using an averaged modulus of continuity for multifunctions. A computational procedure to obtain a certain solution of the discretized inclusion is proposed.

Zusammenfassung

Eine Abschätzung der Hausdorff-Distanz zwischen der Menge aller Lösungen einer Differentialeinschließung und der Eulerschen Approximation dieser Einschließung wird vorgelegt, wobei ein Stetigkeitsmodul für Multifunktionen angewendet wird. Eine numerische Prozedur zur Auffindung einer gewissen Lösung der diskretisierten Einschließung wird vorgeschlagen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Clarke, F. H.: Nonsmooth Analysis and Optimization. J. Wiley 1983.

  2. Taubert, K.: Converging multistep methods for initial value problems involving multivalued maps. Computing27, 123 (1981).

    Google Scholar 

  3. Pshenichny, B. N.: Convex Analysis and Optimization. Moscow: Nauka 1980 (russian).

    Google Scholar 

  4. Dontchev, A. L.: Equivalent perturbations and approximations in optimal control. C. R. Bulg. Acad. Sci.39, 27 (1986).

    Google Scholar 

  5. Mordukhovič, B. S.: A contribution to the theory of finite difference approximations to optimal control problems. Doklady AN BSSR30, 1064 (1986) (russian).

    Google Scholar 

  6. Sendov, Bl., Popov, V.: Averaged Moduli of Smoothness. Sofia: Publ. house Bulg. Acad. Sci. 1983 (bulg.).

    Google Scholar 

  7. Andreev, A. S., Popov, V. A., Sendov, Bl.: Error estimates for numerical solving of ODE. J. Comp. Math. and Math. Phys.21, 635 (1981) (russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is partially supported by the Committee of Science under Grant 127.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dontchev, A.L., Farkhi, E.M. Error estimates for discretized differential inclusions. Computing 41, 349–358 (1989). https://doi.org/10.1007/BF02241223

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02241223

AMS Subject Classifications

Key words