Abstract
We present a branch and bound method which finds a maximum weight clique in an arbitrary weighted graph. The main ingredients are a weighted coloring heuristic which simultaneously produces lower and upper bounds and a branching rule that uses the information obtained in the coloring. The algorithm performs comparable to the fastest method known so far but is much easier to implement.
Zusammenfassung
Wir stellen eine Branch- and Bound-Methode zur Ermittlung einer Clique größten Gewichts in einem beliebigen gewichteten Graph vor. Die Hauptbestandteile sind eine Färbungsheuristik, die gleichzeitig untere und obere Schranken liefert, sowie eine Verzweigungsregel, die die Informationen der Färbung verwendet. Der Algorithmus ist ähnlich leistungsfähig wie die schnellste bisher bekannte Methode, allerdings ist er sehr viel einfacher zu implementieren.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Babel, L.: Finding maximum cliques in arbitrary and in special graphs. Computing46, 321–341 (1991).
Babel, L., Tinhofer, G.: A branch and bound algorithm for the maximum clique problem. ZOR-Meth. Models Oper. Res.34, 207–217 (1990).
Balas, E., Samuelsson, H.: A node convering algorithm. Naval Res. Log. Q.24, 213–233 (1977).
Balas, E., Xue, J.: Minimum weighted coloring of triangulated graphs, with application to maximum weight vertex packing and clique finding in arbitrary graphs. SIAM J. Comput.20, 209–221 (1991); Addendum, SIAM J. Comput.21, 1000, 1992.
Balas, E., Yu, C. S.: Finding a maximum clique in an arbitrary graph. SIAM J. Comput.14, 1054–1068 (1986).
Brelaz, D.: New methods to color the vertices of a graph. Comm. ACM22, 251–256 (1979).
Carraghan, R., Pardalos, P. M.: An exact algorithm for the maximum clique problem. Operat. Res. Lett.9, 375–382 (1990).
Friden, C., Hertz, A., de Werra, D.: TABARIS: An exact algorithm based on tabu search for finding a maximum independent set in a graph. Comput. Operat. Res.17, 437–445 (1990).
Loukakis, E., Tsouros, C.: An algorithm for the maximum internally stable set in a weighted graph. Int. J. Comput. Math.13, 117–125 (1983).
Mannino, C., Sassano, A.: An exact algorithm for the maximum stable set problem. Technical Report R. 334 Istituto Di Analisi Dei Sistemi Ed Informatica Rome, 1992.
Nemhauser, G. L., Sigismondi, G.: A strong cutting plane/branch-and-bound algorithm for node packing. J. Opl. Res. Soc.43, 443–457 (1992).
Nemhauser, G. L., Trotter, L. E.: Vertex packings: structural properties and algorithms. Math. Programm.8, 232–248 (1975).
Pardalos, P. M., Desai, N.: An algorithm for finding a maximum weighted independent set in an arbitrary graph. Int. J. Comput. Math.38, 163–175 (1991).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Babel, L. A fast algorithm for the maximum weight clique problem. Computing 52, 31–38 (1994). https://doi.org/10.1007/BF02243394
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02243394