Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A fast algorithm for the maximum weight clique problem

Ein schneller Algorithmus für das gewichtete Maximum Clique Problem

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We present a branch and bound method which finds a maximum weight clique in an arbitrary weighted graph. The main ingredients are a weighted coloring heuristic which simultaneously produces lower and upper bounds and a branching rule that uses the information obtained in the coloring. The algorithm performs comparable to the fastest method known so far but is much easier to implement.

Zusammenfassung

Wir stellen eine Branch- and Bound-Methode zur Ermittlung einer Clique größten Gewichts in einem beliebigen gewichteten Graph vor. Die Hauptbestandteile sind eine Färbungsheuristik, die gleichzeitig untere und obere Schranken liefert, sowie eine Verzweigungsregel, die die Informationen der Färbung verwendet. Der Algorithmus ist ähnlich leistungsfähig wie die schnellste bisher bekannte Methode, allerdings ist er sehr viel einfacher zu implementieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Babel, L.: Finding maximum cliques in arbitrary and in special graphs. Computing46, 321–341 (1991).

    Google Scholar 

  2. Babel, L., Tinhofer, G.: A branch and bound algorithm for the maximum clique problem. ZOR-Meth. Models Oper. Res.34, 207–217 (1990).

    Article  Google Scholar 

  3. Balas, E., Samuelsson, H.: A node convering algorithm. Naval Res. Log. Q.24, 213–233 (1977).

    Google Scholar 

  4. Balas, E., Xue, J.: Minimum weighted coloring of triangulated graphs, with application to maximum weight vertex packing and clique finding in arbitrary graphs. SIAM J. Comput.20, 209–221 (1991); Addendum, SIAM J. Comput.21, 1000, 1992.

    Article  Google Scholar 

  5. Balas, E., Yu, C. S.: Finding a maximum clique in an arbitrary graph. SIAM J. Comput.14, 1054–1068 (1986).

    Article  Google Scholar 

  6. Brelaz, D.: New methods to color the vertices of a graph. Comm. ACM22, 251–256 (1979).

    Article  Google Scholar 

  7. Carraghan, R., Pardalos, P. M.: An exact algorithm for the maximum clique problem. Operat. Res. Lett.9, 375–382 (1990).

    Article  Google Scholar 

  8. Friden, C., Hertz, A., de Werra, D.: TABARIS: An exact algorithm based on tabu search for finding a maximum independent set in a graph. Comput. Operat. Res.17, 437–445 (1990).

    Article  Google Scholar 

  9. Loukakis, E., Tsouros, C.: An algorithm for the maximum internally stable set in a weighted graph. Int. J. Comput. Math.13, 117–125 (1983).

    Google Scholar 

  10. Mannino, C., Sassano, A.: An exact algorithm for the maximum stable set problem. Technical Report R. 334 Istituto Di Analisi Dei Sistemi Ed Informatica Rome, 1992.

  11. Nemhauser, G. L., Sigismondi, G.: A strong cutting plane/branch-and-bound algorithm for node packing. J. Opl. Res. Soc.43, 443–457 (1992).

    Google Scholar 

  12. Nemhauser, G. L., Trotter, L. E.: Vertex packings: structural properties and algorithms. Math. Programm.8, 232–248 (1975).

    Article  Google Scholar 

  13. Pardalos, P. M., Desai, N.: An algorithm for finding a maximum weighted independent set in an arbitrary graph. Int. J. Comput. Math.38, 163–175 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babel, L. A fast algorithm for the maximum weight clique problem. Computing 52, 31–38 (1994). https://doi.org/10.1007/BF02243394

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02243394

AMS Subject Classification

Key words