Abstract
We consider multigrid applied to a class of singularly perturbed two-point boundary value problems. In the multigrid method we use a matrix-dependent prolongation and restriction. For a class of two-grid method we prove uniform convergence for allh (mesh size parameter) and ε (perturbation parameter).
Zusammenfassung
In dieser Arbeit wird ein Mehrgittierverfahren für eine Klasse singulär gestörter Randwertprobleme untersucht. In dem mehrgitterverfahren verwenden wir eine matrixabhängige prolongation und Restriktion. Für eine Klasse von Zweigittermethoden beweisen wir gleichmäßige Konvergenz für alleh (Schrittweitenparameter) und ε (Parameter der singuläre Störung).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
van Asselt, E. J.: The multi-grid method and artificial viscosity. In: Hackbusch, W., Trottenberg, U. (eds.) Multigrid methods, 313–326. Berlin, Heidelberg, New York: Springer 1982 (Lecture Notes in Mathematicsd, 960).
Bank, R. E., Benbourenane, M.: The hierarchical basis multigrid method for convection-diffusion equations. Numer. Math.61, 7–37 (1992).
Dendy, J. E., Jr.: Black box multigrid for nonsymmetric problems. Appl. Math. Comp.13, 261–283 (1983).
Doolan, E. P., Miller, J. J. H., Schilkders, W. H. A.: Uniform numerical methods for problems with initial and boundary layers. Dublin: Boole Press 1980.
Eckhaus, W.: Matched aseymptotic expansions and singular perturbations. Amsterdam: North-Holland 1973.
Hackbusch, W.: Multi-grid methods and applications. Berlin, Heidelberg, New York, Tokyo: Springer 1985.
Hackbusch, W.: Multigrid convergence for a singular perturbation problem. Linear Algebra Appl.58, 125–145 (1984).
Hemker, P. W.: A numerical study of stiff two-point boundary problems, Preprint MC Tracts80, Amsterdam: 1970.
Hemker, P. W., Kettler, R., Wesseling, P., de Zeeuw, P. M.: Multigrid methods: development of fast solvers. Appl. Math. Comp.13, 331–326 (1983).
McCormick, S. F. (ed.): Multigrid Methods. Philadelphia: SIAM 1987.
O'Malley, R. E., Jr.: Introduction to singular perturbations. New York: Academic Press 1974.
Reusken, A.: On maximum nom convergence of multigrid methods for two-point boundary value problems. SIAM J. Numer. Anal.29, 1569–1578 (1992).
Reusken, A.: The smoothing property for regular splittings. (to appear in Proceedings of the Eight GAMM-Seminar Kieel in Incomplete Decompositions, 1922).
Wesseling, P., In-introduction to multigrid methods. Chichester: Wiley 1992.
de Zeeuw, P. M.: Matrix-dependent prolongations and restrictions in a blackbox multigrid solver. J. Comput.Appl. Math.33, 1–27 (1990).
de Zeeuw, P. M., van Asselt E. J.: The convergence rate of multi-level algorithms applied to the convection-diffusion equation. SIAM J. Sci. Stat. Comput.6, 492–503 (1985).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Reusken, A. Multigrid with matrix-dependent transfer operators for a singular perturbation problem. Computing 50, 199–211 (1993). https://doi.org/10.1007/BF02243811
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02243811