Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multigrid with matrix-dependent transfer operators for a singular perturbation problem

Mehrgitterverfahren mit matrixabhängigen Transferoperatoren für ein singulär gestöres Problem

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We consider multigrid applied to a class of singularly perturbed two-point boundary value problems. In the multigrid method we use a matrix-dependent prolongation and restriction. For a class of two-grid method we prove uniform convergence for allh (mesh size parameter) and ε (perturbation parameter).

Zusammenfassung

In dieser Arbeit wird ein Mehrgittierverfahren für eine Klasse singulär gestörter Randwertprobleme untersucht. In dem mehrgitterverfahren verwenden wir eine matrixabhängige prolongation und Restriktion. Für eine Klasse von Zweigittermethoden beweisen wir gleichmäßige Konvergenz für alleh (Schrittweitenparameter) und ε (Parameter der singuläre Störung).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. van Asselt, E. J.: The multi-grid method and artificial viscosity. In: Hackbusch, W., Trottenberg, U. (eds.) Multigrid methods, 313–326. Berlin, Heidelberg, New York: Springer 1982 (Lecture Notes in Mathematicsd, 960).

    Google Scholar 

  2. Bank, R. E., Benbourenane, M.: The hierarchical basis multigrid method for convection-diffusion equations. Numer. Math.61, 7–37 (1992).

    Article  Google Scholar 

  3. Dendy, J. E., Jr.: Black box multigrid for nonsymmetric problems. Appl. Math. Comp.13, 261–283 (1983).

    Article  Google Scholar 

  4. Doolan, E. P., Miller, J. J. H., Schilkders, W. H. A.: Uniform numerical methods for problems with initial and boundary layers. Dublin: Boole Press 1980.

    Google Scholar 

  5. Eckhaus, W.: Matched aseymptotic expansions and singular perturbations. Amsterdam: North-Holland 1973.

    Google Scholar 

  6. Hackbusch, W.: Multi-grid methods and applications. Berlin, Heidelberg, New York, Tokyo: Springer 1985.

    Google Scholar 

  7. Hackbusch, W.: Multigrid convergence for a singular perturbation problem. Linear Algebra Appl.58, 125–145 (1984).

    Article  Google Scholar 

  8. Hemker, P. W.: A numerical study of stiff two-point boundary problems, Preprint MC Tracts80, Amsterdam: 1970.

  9. Hemker, P. W., Kettler, R., Wesseling, P., de Zeeuw, P. M.: Multigrid methods: development of fast solvers. Appl. Math. Comp.13, 331–326 (1983).

    Article  Google Scholar 

  10. McCormick, S. F. (ed.): Multigrid Methods. Philadelphia: SIAM 1987.

    Google Scholar 

  11. O'Malley, R. E., Jr.: Introduction to singular perturbations. New York: Academic Press 1974.

    Google Scholar 

  12. Reusken, A.: On maximum nom convergence of multigrid methods for two-point boundary value problems. SIAM J. Numer. Anal.29, 1569–1578 (1992).

    Article  Google Scholar 

  13. Reusken, A.: The smoothing property for regular splittings. (to appear in Proceedings of the Eight GAMM-Seminar Kieel in Incomplete Decompositions, 1922).

  14. Wesseling, P., In-introduction to multigrid methods. Chichester: Wiley 1992.

    Google Scholar 

  15. de Zeeuw, P. M.: Matrix-dependent prolongations and restrictions in a blackbox multigrid solver. J. Comput.Appl. Math.33, 1–27 (1990).

    Article  Google Scholar 

  16. de Zeeuw, P. M., van Asselt E. J.: The convergence rate of multi-level algorithms applied to the convection-diffusion equation. SIAM J. Sci. Stat. Comput.6, 492–503 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reusken, A. Multigrid with matrix-dependent transfer operators for a singular perturbation problem. Computing 50, 199–211 (1993). https://doi.org/10.1007/BF02243811

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02243811

AMS subject classification

Key words