Abstract
A modified Beale's algorithm is described which computes the local minimizer of any quadratic objective function subject to linear constraints. Some extensions are given, first of all the possibility of movement to the neighbouring local minimizer with a reduced objective function value in some special cases.
Zusammenfassung
Es wird ein modifizierter Beale Algorithmus zur Bestimmung eines lokalen Extremums eines beliebigen quadratischen Programms bei linearen Restriktionen vorgestellt. Dazu werden einige Erweiterungen angegeben, etwa die Möglichkeit zu einem benachbarten lokalen Minimum mit kleinerem Zielfunktionalswert überzugehen.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Beale, E. M. L.: On Minimizing a convex function subject to linear inequalities. J. Roy. Statist. Soc.17, 173–184. (1955).
Beale, E. M. L.: On quadratic programming. Naval. Res. Logistics Quarterly6: 227–243. (1957)
Abadie, J.: Nonlinear programming. Amsterdam: North-Holland. 1967.
Mráz, F.: Solving a noncovexx quadratic programming problem. Sborník PFČ. Budějovice 1980, 67–83 (in czech).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Mráz, F. Local minimizer of a nonconvex quadratic programming problem. Computing 45, 283–289 (1990). https://doi.org/10.1007/BF02250640
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02250640