Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An interval arithmetic method for global optimization

Eine intervallarithmetische Methode zur globalen Optimierung

  • Published:
Computing Aims and scope Submit manuscript

Abstract

An interval arithmetic method is described for finding the global maxima or minima of multivariable functions. The original domain of variables is divided successively, and the lower and the upper bounds of the interval expression of the function are estimated on each subregion. By discarding subregions where the global solution can not exist, one can always find the solution with rigorous error bounds. The convergence can be made fast by Newton's method after subregions are grouped. Further, constrained optimization can be treated using a special transformation or the Lagrange-multiplier technique.

Zusammenfassung

Es wird eine Intervall-Methode zur Auffindung der globalen Maxima oder Minima von Funktionen mehrerer Veränderlicher beschrieben. Der Definitionsbereich der Variablen wird sukzessiv unterteilt. In jedem Teilgebiet werden die obere und die untere Grenze des Intervall-Ausdrucks der Funktion berechnet. Durch Weglassen von Teilgebieten, welche die Lösung nicht enthalten, können wir immer die Lösung zusammen mit exakten Fehlerschranken finden. Durch Gruppierung der Teilgebiete kann die Konvergenz mit Newtons Methode beschleunigt werden. Extremwertaufgaben mit Nebenbedingungen behandeln wir mit einer speziellen Transformation oder Lagrangeschen Multiplikatoren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kowalik, J., Osborne, M. R.: Methods for unconstrained optimization problems. New York: Elsevier 1968.

    Google Scholar 

  2. Bremermann H.: A method of unconstrained global optimization. Math. Biosci.9, 1–15 (1970).

    Article  Google Scholar 

  3. Moore, R. E.: Interval analysis. Englewood Cliffs, N. J.: Prentice-Hall 1966.

    Google Scholar 

  4. Hansen E., Smith, R. R.: A computer program for solving a system of linear equation and matrix inversion with automatic error bound using interval arithmetic. LMSC 4-22-66-3, Lockheed Missiles & Space Co., California (1966).

    Google Scholar 

  5. Chow, T. S., Milnes, H. W.: Solution of Laplace's equation by boundary contraction over regions of irregular shape. Numer. Math.4, 209–225 (1962).

    Article  Google Scholar 

  6. Branin, F. H., jr.: Widely convergent method for finding multiple solutions of simultaneous nonlinear equations. IBM J.9, 504–522 (1972).

    Google Scholar 

  7. Dixon, L. C. W.: Nonlinear optimisation. London: The English Univ. Press 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichida, K., Fujii, Y. An interval arithmetic method for global optimization. Computing 23, 85–97 (1979). https://doi.org/10.1007/BF02252616

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02252616

Keywords