Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the approximate solution of first-kind integral equations of Volterra type

Über die numerische Lösung Volterrascher Integralgleichungen erster Art

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The present paper deals with the approximate solution of integral equations of the first kind, (

y)x∈I:=[a, b], where

denotes a (linear) integral operator of Volterra (or Abel) type, and wheregC(I), withg(a)=0. The given functiong is approximated uniformly onI (or on a finite subsetZ⊂I by using certain weak Chebyshev systems onI which are obtained in a natural way. By the linearity of

this yields an approximation to the exact solutiony onI. Questions of uniqueness and characterization of such approximating functions, as well as numerical aspects of the approximation problem are discussed.

Zusammenfassung

Die vorliegende Arbeit behandelt die numerische Lösung von Integralgleichungen erster Art, nämlich (

y)x∈I:=[a, b], mitg∈C(I), g(a)=0, wobei

ein (linearer) Integraloperator vom Volterraschen (oder Abelschen) Typ bezeichnet. Die gegebene Funktiong wird aufI (oder auf einer endlichen TeilmengeZ⊂I) unter Benutzung gewisser schwacher (weak) Tschebyscheff-Systeme gleichmäßig angenähert. Wegen der Linearität von

besitzt man daher sofort eine Näherungsfunktion für die gesuchte Lösungy. Die Existenz und Charakterisierung wie auch die numerische Bestimmung solcher Näherungsfunktionen wird untersucht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Achieser, N. I.: Theory of Approximation. New York: F. Ungar Publ. Co. 1965.

    Google Scholar 

  2. Atkinson, K. E.: An existence theorem for Abel integral equations. Preprint. 1973.

  3. Bôcher, M.: An Introduction to the Study of Integral Equations 2nd ed. London: Cambridge University Press. 1913.

    Google Scholar 

  4. Brunner, H.: The numerical solution of a class of Abel integral equations by piecewise polynomials. J. Comput. Phys.12, 412 (1973).

    Google Scholar 

  5. Friedrich, J.: Bemerkung zur Abelschen Integralgleichung. Z. Angew. Math. Phys.11, 191 (1960).

    Google Scholar 

  6. Isaacson, E., and H. B. Keller: Analysis of Numerical Methods. New York: Wiley 1966.

    Google Scholar 

  7. Karlin, S., and W. J. Studden: Tchebycheff Systems: With Applications in Analysis and Statistics. New York: Wiley. 1966.

    Google Scholar 

  8. Kowalewski, G.: Integralgleichungen. Berlin: de Gruyter & Co. 1930.

    Google Scholar 

  9. Meinardus, G.: Approximation of Functions: Theory and Numerical Methods. Berlin-Heidelberg-New York: Springer. 1967.

    Google Scholar 

  10. Pólya, G., und G. Szegö: Aufgaben und Lehrsätze aus der Analysis, Bd. II. Berlin-Göttingen-Heidelberg: Springer. 1960.

    Google Scholar 

  11. Shilov, G. Y.: Mathematical Analysis. Oxford: Pergamon Press. 1965.

    Google Scholar 

  12. Sneddon, I. H.: The Use of Integral Transforms. New York: McGraw-Hill. 1972.

    Google Scholar 

Added in proof

  1. Dunham, C. B.: Chebyshev approximation with a null point. Z. Angew. Math. Mech.52, 239 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by the National Research Council of Canada (Grant No. A-4805).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunner, H. On the approximate solution of first-kind integral equations of Volterra type. Computing 13, 67–79 (1974). https://doi.org/10.1007/BF02268392

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02268392

Keywords