Summary
In this paper, we wish to describe a new approach to the numerical solution of theFredholm integral equation
for the case where the kernel functionk(u, v) is positive. Our method is a gradient technique which is quite different in motivation from any of the usual methods. It is suggested by the invariant imbedding treatment of radiative transfer processes.
Zusammenfassung
In dieser Arbeit wird eine neue Methode zur numerischen Lösung derFredholmschen Integralgleichung
für den Fall einer positiven Kernfunktionk(u, v) beschrieben. Diese Methode ist eine Gradiententechnik, welche sich in der Motivierung von den gewöhnlichen Methoden gänzlich unterscheidet. Sie wird bei einer bestimmten Behandlung von Übertragungsvorgängen durch Strahlung nahegelegt.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bellman, R., R. Kalaba andM. Prestrud: Invariant Imbedding and Radiative Transfer in Slabs of Finite Thickness. New York: American Elsevier Publishing Company, Inc. 1963.
Bellman, R., H. Kagiwada, R. Kalaba andM. Prestrud: Invariant Imbedding and Time-dependent Processes. New York: American Elsevier Publishing Company, Inc. 1964.
Bellman, R., andR. Kalaba: Quasilinearization and Nonlinear Boundary-value Problems. New York: American Elsevier Publishing Company, Inc. 1965.
Bellman, R., andR. Kalaba: A Note on Nonlinear Summability Techniques in Invariant Imbedding. J. Math. Anal. Appl.6, 465–472 (1963). These results were initially sketched in
Bellman, R.: A New Approach to the Numerical Solution of a Class of Linear and Nonlinear Integral Equations ofFredholm Type. Proc. Nat. Acad. Sci. USA. VI.54, 1501–1503 (1965).
Author information
Authors and Affiliations
Additional information
This work was supported by the National Science Foundation under Grant No. GP-6154.
Rights and permissions
About this article
Cite this article
Bellman, R. A new technique for the numerical solution of Fredholm integral equations. Computing 3, 131–138 (1968). https://doi.org/10.1007/BF02277455
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02277455