Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Simplimax: Oblique rotation to an optimal target with simple structure

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Factor analysis and principal component analysis are usually followed by simple structure rotations of the loadings. These rotations optimize a certain criterion (e.g., varimax, oblimin), designed to measure the degree of simple structure of the pattern matrix. Simple structure can be considered optimal if a (usually large) number of pattern elements is exactly zero. In the present paper, a class of oblique rotation procedures is proposed to rotate a pattern matrix such that it optimally resembles a matrix which has an exact simple pattern. It is demonstrated that this method can recover relatively complex simple structures where other well-known simple structure rotation techniques fail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Browne, M. W. (1972a). Orthogonal rotation to a partially specified target.British Journal of Mathematical and Statistical Psychology, 25, 115–120.

    Google Scholar 

  • Browne, M. W. (1972b). Oblique rotation to a partially specified target.British Journal of Mathematical and Statistical Psychology, 25, 207–212.

    Google Scholar 

  • Carroll, J. B. (1957). Biquartimin criterion for rotation to oblique simple structure in factor analysis.Science, 126, 1114–1115.

    Google Scholar 

  • Clarkson, D. B., & Jennrich, R. I. (1988). Quartic rotation criteria and algorithms.Psychometrika, 53, 251–259.

    Google Scholar 

  • Cliff, N. (1966). Orthogonal rotation to congruence.Psychometrika, 31, 33–42.

    Google Scholar 

  • Cureton, E. E., & Mulaik, S. A. (1975). The weighted varimax rotation and the Promax rotation.Psychometrika, 40, 183–195.

    Google Scholar 

  • Digman, J. M. (1966).The procrustes class of factor-analytic transformations. Unpublished manuscript, University of Hawaii.

  • Gruvaeus, G. T. (1970). A general approach to Procrustes pattern rotation.Psychometrika, 35, 493–505.

    Google Scholar 

  • Harman, H. H. (1976).Modern factor analysis (3rd ed.). Chicago: University of Chicago Press.

    Google Scholar 

  • Harris, C. W., & Kaiser, H. F. (1964). Oblique factor analytic solutions by orthogonal transformations.Psychometrika, 29, 347–362.

    Google Scholar 

  • Hendrickson, A. E., & White, P. O. (1964). PROMAX: A quick method for rotation to oblique simple structure.British Journal of Statistical Psychology, 17, 65–70.

    Google Scholar 

  • Holzinger, K. J., & Swineford, F. (1939).A study in factor analysis: The stability of a bi-factor solution (Supplementary Educational Monographs No. 48). Chicago: University of Chicago, Department of Education.

    Google Scholar 

  • Jennrich, R. I., & Sampson, P. F. (1966). Rotation for simple loadings.Psychometrika, 31, 313–323.

    Google Scholar 

  • Jöreskog, K. G. (1965).On rotation to a specified simple structure (Research Bulletin). Princeton, NJ: ETS.

    Google Scholar 

  • Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.Psychometrika, 23, 187–200.

    Google Scholar 

  • Kashiwagi, S. (1989).Orthogonal and oblique Procrustes factor rotation methods based on the procedure of single plane assuming the multiple classification of test vectors, Japanese psychological monographs 19. Tokyo: University Press. (in Japanese)

    Google Scholar 

  • Lawley, D. N., & Maxwell, A. E. (1964). Factor transformation methods.British Journal of Statistical Psychology, 17, 97–103.

    Google Scholar 

  • Mulaik, S. A. (1972).The foundations of factor analysis. New York: McGraw-Hill.

    Google Scholar 

  • Shiba, S. (1972).Factor Analysis. Tokyo: University of Tokyo Press. (in Japanese)

    Google Scholar 

  • Thurstone, L. L. (1947).Multiple factor analysis. Chicago: University of Chicago Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research has been made possible by a fellowship from the Royal Netherlands Academy of Arts and Sciences. The author is obliged to Jos ten Berge for helpful comments on an earlier version.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiers, H.A.L. Simplimax: Oblique rotation to an optimal target with simple structure. Psychometrika 59, 567–579 (1994). https://doi.org/10.1007/BF02294392

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294392

Key words