Abstract
Factor analysis and principal component analysis are usually followed by simple structure rotations of the loadings. These rotations optimize a certain criterion (e.g., varimax, oblimin), designed to measure the degree of simple structure of the pattern matrix. Simple structure can be considered optimal if a (usually large) number of pattern elements is exactly zero. In the present paper, a class of oblique rotation procedures is proposed to rotate a pattern matrix such that it optimally resembles a matrix which has an exact simple pattern. It is demonstrated that this method can recover relatively complex simple structures where other well-known simple structure rotation techniques fail.
Similar content being viewed by others
References
Browne, M. W. (1972a). Orthogonal rotation to a partially specified target.British Journal of Mathematical and Statistical Psychology, 25, 115–120.
Browne, M. W. (1972b). Oblique rotation to a partially specified target.British Journal of Mathematical and Statistical Psychology, 25, 207–212.
Carroll, J. B. (1957). Biquartimin criterion for rotation to oblique simple structure in factor analysis.Science, 126, 1114–1115.
Clarkson, D. B., & Jennrich, R. I. (1988). Quartic rotation criteria and algorithms.Psychometrika, 53, 251–259.
Cliff, N. (1966). Orthogonal rotation to congruence.Psychometrika, 31, 33–42.
Cureton, E. E., & Mulaik, S. A. (1975). The weighted varimax rotation and the Promax rotation.Psychometrika, 40, 183–195.
Digman, J. M. (1966).The procrustes class of factor-analytic transformations. Unpublished manuscript, University of Hawaii.
Gruvaeus, G. T. (1970). A general approach to Procrustes pattern rotation.Psychometrika, 35, 493–505.
Harman, H. H. (1976).Modern factor analysis (3rd ed.). Chicago: University of Chicago Press.
Harris, C. W., & Kaiser, H. F. (1964). Oblique factor analytic solutions by orthogonal transformations.Psychometrika, 29, 347–362.
Hendrickson, A. E., & White, P. O. (1964). PROMAX: A quick method for rotation to oblique simple structure.British Journal of Statistical Psychology, 17, 65–70.
Holzinger, K. J., & Swineford, F. (1939).A study in factor analysis: The stability of a bi-factor solution (Supplementary Educational Monographs No. 48). Chicago: University of Chicago, Department of Education.
Jennrich, R. I., & Sampson, P. F. (1966). Rotation for simple loadings.Psychometrika, 31, 313–323.
Jöreskog, K. G. (1965).On rotation to a specified simple structure (Research Bulletin). Princeton, NJ: ETS.
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.Psychometrika, 23, 187–200.
Kashiwagi, S. (1989).Orthogonal and oblique Procrustes factor rotation methods based on the procedure of single plane assuming the multiple classification of test vectors, Japanese psychological monographs 19. Tokyo: University Press. (in Japanese)
Lawley, D. N., & Maxwell, A. E. (1964). Factor transformation methods.British Journal of Statistical Psychology, 17, 97–103.
Mulaik, S. A. (1972).The foundations of factor analysis. New York: McGraw-Hill.
Shiba, S. (1972).Factor Analysis. Tokyo: University of Tokyo Press. (in Japanese)
Thurstone, L. L. (1947).Multiple factor analysis. Chicago: University of Chicago Press.
Author information
Authors and Affiliations
Additional information
This research has been made possible by a fellowship from the Royal Netherlands Academy of Arts and Sciences. The author is obliged to Jos ten Berge for helpful comments on an earlier version.
Rights and permissions
About this article
Cite this article
Kiers, H.A.L. Simplimax: Oblique rotation to an optimal target with simple structure. Psychometrika 59, 567–579 (1994). https://doi.org/10.1007/BF02294392
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02294392