Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Implantable telemeter for long-term electroneurographic recordings in animals and humans

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A system is described that amplifies an electroneurographic signal (ENG) from a tripolar electrode nerve cuff and transmits it from the implanted amplifier to an external drive box. The output was raw ENG, bandpass filtered from 800 to 8000 Hz. The implant was powered by radio-frequency induction and operated for coil-to-coil separations up to 30 mm. The testing and performance of the system is described. The input-referred noise was never more than 1μV RMS, and, at some positions of the radio-frequency field, was 0.7μV, close to the expected value for the amplifier used. The common-mode rejection ratio (CMRR) depended on the impedance imbalance from the cuff and the length of input cable. Devices with a short cable and low source impedance had CMRR of 84 dB, but, with 31 cm of cable and a real cuff, the CMRR fell to 66 dB. Recovery from a stimulus artifact took 5ms. The responses of the cuff to external potential gradients and to common-mode signals are described theoretically or by simulation. The devices are available for use in neuroprosthetic or neurophysiological research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreassen, L. N. S., andStruijk, J. J. (2000): ‘Configuration for improved SNR in nerve cuff electrode recordings’. Proc. 5th Annual Conference of IFESS, June, pp. 365–367

  • Donaldson, N. (1979): ‘Morphognostic coils: a technique for transmitting nearfield radio signals through the same space’,Med. Biol. Eng. Comput.,17, pp. 271–274.

    Google Scholar 

  • Donaldson, P. E. K. (1983): ‘The Cooper cable: an implantable multiconductor cable for neurological prostheses’,Med. Biol. Eng. Comput.,21, pp. 371–374

    Google Scholar 

  • Donaldson, N., andPerkins, T. A. (1983): ‘Analysis of resonant coupled coils in the design of radio frequency transcutaneous links’,Med. Biol. Eng. Comput.,21, pp. 612–627

    Google Scholar 

  • Donaldson, P. (1985): ‘The Craggs connector; a termination for Cooper cable’,Med. Biol. Eng. Comput.,23, pp. 195–196

    Google Scholar 

  • Donaldson, N. (1988): ‘Low-technology sealing method for implantable hermetic package’,Med. Biol. Eng. Comput.,26, pp. 111–116

    Google Scholar 

  • Donaldson, N. (1992): ‘The effect that the metallic seal of an hermetic enclosure has on the induction of power to an implant’,Med. Biol. Eng. Comput.,30, pp. 63–68

    Google Scholar 

  • Donaldson, P. E. K., andAylett, B. J. (1995): ‘Aspects of silicone rubber as encapsulant for neurological prostheses. Part 2: adhesion to binary oxides’,Med. Biol. Eng. Comput.,33, pp. 285–292

    Google Scholar 

  • Donaldson, N., Zhou, L., Haugland, M., andSinkjaer, T. (2000a): ‘An implantable telemeter for long-term electroneurographic recordings in animals and humans’. Proc. 5th Annual Conference of IFESS, June, pp. 378–381

  • Donaldson, N., Donaldson, P. E. K., andZhou, L. (2000b): “Speeding up the cure of one-part silicone rubber, when encapsulating neurological prostheses: the permeable mould’,Med. Eng. Phys.,22, pp. 301–306

    Article  Google Scholar 

  • Geddes, L. A., andBaker, L. E. (1989): ‘Principles of applied biomedical instrumentation’, 3rd edn (Wiley, 1989), p. 318

  • Grill, W. M., Creasey, G. H., Wu, K., andTakaoka, Y. (2000): ‘Detection of hyperreflexia-like increases in bladder pressure by recording of sensory nerve activity in human spinal cord injury’. Proc. 5th Annual Conference of IFESS, June 2000, p. 234.

  • Hansen, M., Haugland, M., Sinkjer, T., Donaldson, N. (2002): ‘Real time foot drop correction using machine learning and natural sensors’,Neuromodulation,5, pp. 41–53

    Article  Google Scholar 

  • Haugland, M. K., Hoffer, J. A., andSinkjaer, T. (1994): ‘Skin contact force information in sensory nerve signals recorded by implanted cuff electrodes’,IEEE Trans. Rehab. Eng.,2, pp. 18–28

    Google Scholar 

  • Haugland, M., andHoffer, J. A. (1994a): ‘Artefact-free sensory nerve signals obtained from cuff electrodes during functional electrical stimulation of nearby muscles’,IEEE Trans. Rehab. Eng.,2, pp. 37–40

    Google Scholar 

  • Haugland, M. K., andHoffer, J. A. (1994b): ‘Slip information obtained from the cutaneous electroneurogram: application in closed-loop control of functional electrical stimulation’,IEEE Trans. Rehab. Eng.,2, pp. 19–36

    Google Scholar 

  • Haugland, M. K., andSinkjaer, T. (1995): ‘Cutaneous whole nerve recordings used for correction of footdrop in hemiplegic man’,IEEE Trans. Rehab. Eng.,5, pp. 307–317

    Google Scholar 

  • Haugland, M., Lickel, A., Haase, J., andSinkjaer, T. (1999): ‘Control of FES thumb force using slip information obtained from the cutaneous electroneurogram in quadriplegic man’,IEEE Trans. Rehab. Eng.,7, pp. 215–227

    Article  Google Scholar 

  • Hoffer, J. A., Marks, W. B., andRymer, W. Z. (1974): ‘Nerve fiber activity during normal movements’,Proc. Annual Meeting for Society for Neuroscience, St Louis,4, p. 300

    Google Scholar 

  • Hoffer, J. A., andSinkjaer, T. (1986): ‘A natural ‘force sensor’ suitable for closed-loop control of functional neuromuscular stimulation’. Proc. 2nd Vienna International Workshop on Functional electrostimulation, Sept., pp. 47–50

  • Hoffer, J. A. (1990): ‘Techniques to record spinal cord, peripheral nerve and muscle activity in freely moving animals’, inBoulton, A. A., Baker, G. B., andVanderwolf, C. H. (Eds): ‘Neurophysiological techniques: applications to neural systems. Neuromethods 15’ (Humana Press, Clifton, NJ, 1990), pp. 65–145

    Google Scholar 

  • Horowitz, P., andHill, W. (1989): ‘The art of electronics’, 2nd edn (Cambridge University Press, 1989), Chap. 7

  • Jezernik, S., Wen, J. G., Rijkhoff, N. J. M., Djurhuus, J. C., andSinkjaer, T. (2000): ‘Analysis of bladder related nerve cuff electrode recordings from preganglionic pelvic nerve and sacral roots in pigs’,J. Urology,163, pp. 1309–1314

    Google Scholar 

  • Kurstjens, G. A. M., Dalmose, A. L. Haugland, M., Rijkhoff, N. J. M., andSinkjær, T. (2001): ‘Long-term electroneurographic recordings from nerve cuff electrodes on sacral nerve root in pigs’ Proc. 6th Annual Conf. of International Functional Electrical Stimulation Society, Cleveland, pp. 22–24

  • Nikolic, Z. M., Popovic, D. B., Stein, R. B., andKenwell, Z. (1994): ‘Instrumentation for ENG and EMG recordings in FES systems’,IEEE Trans. Biomed. Eng.,41, pp. 703–706

    Article  Google Scholar 

  • Popovic, D., Stein, R. B., Jovanovic, K., Dai, R., Kostov, A., andArmstrong, W. W. (1993): ‘Sensory nerve recording for closedloop control to restore motor functions’,IEEE Trans. Biomed. Eng.,40, pp. 1024–1031

    Google Scholar 

  • Rahal, M., Taylor, J., andDonaldson, N. (2000): ‘The effect of nerve cuff geometry on interference reduction: a study by computer modelling’,IEEE Trans. Biomed. Eng.,47, pp. 136–138

    Google Scholar 

  • Riso, R. R., Slot, P. J., Haugland, M. K., andSinkjær, T (1995): ‘Characterization of cutaneous nerve responses for control of neuromotor prostheses’. Proc. 5th Vienna International Workshop on Functional electrostimulation, Aug., pp. 335–338

  • Riso, R., andSlot, P. J. (1996): ‘Characterization of the ENG activity from a digital nerve for feedback control in grasp neuroprostheses’, inPedotti, A., Ferrarin, M., Quintern, J., andRiener, R. (Eds): ‘Neuroprosthetics from basic research to clinical applications’ (Springer, Berlin, New York, 1996), pp. 345–357

    Google Scholar 

  • Sahin, M., andDurand, D. M. (1998): ‘Closed-loop stimulations of hypoglossal nerve using its spontaneous activity as the feedback signal’,Proc. 20th Annual Int. Conf. IEEE EMBS,5, pp. 2524–2527

    Google Scholar 

  • Sinkjaer, T., Haugland, M., Struijk, J., andRiso, R. (1999): ‘Long-term Cuff electrode recordings from peripheral nerves in animals and humans’, inWindhorst, U., andJohansson, H. (Eds): ‘Modern techniques in neuroscience’ (Springer-Verlag, 1999), pp. 787–802

  • Sinkjaer, T., Rijkhoff, N., Haugland, M., Kurstjens, M., van Kerrebroek, P., Casey, A., Kirkham, A., Knight, S., Shah, J., Donaldson, N., andCraggs, M. (2000): ‘Electroneurographic (ENG) signals from intradural S3 dorsal sacral nerve roots in a patient with a suprasacral spinal cord injury’. Proc. 5th Annual Conference of IFESS, June, pp. 361–364

  • Slot, P., Selmar, P., Rasmussen, A., andSinkjaer, T. (1997): ‘Effect of long-term implanted nerve cuff electrodes on the electrophysiological properties of human sensory nerves’,J. Artif. Organs,21, pp. 207–209

    Google Scholar 

  • Stein, R. B., Charles, D., Davis, L., Jhamandas, J., Mannard, A., andNichols, T. R. (1975): ‘Principles underlying new methods for chronic neural recording’,Le Journal Canadien des Sciences Neurologiques,2, pp. 235–244

    Google Scholar 

  • Struijk, J. J., Haugland, M. K., andThomsen, M. (1996): ‘Fasciele selective recording with a nerve cuff electrode’. 18th Annual International Conference of IEEE EMBS, Vol. 1, pp. 361–362

    Google Scholar 

  • Struijk, J. J., Thomsen, M., Larsen, J. O., andSinkjaer, T. (1999) ‘Cuff electrodes for long-term recording of natural sensory information’,IEEE EMBS Mag., (May/June), pp. 91–98

  • Upshaw, B., andSinkjaer, T. (1998): ‘Digital signal processing algorithms for the detection of afferent nerve activity recorded from cuff electrodes’,IEEE Trans. Rehab. Eng.,6, pp. 172–181

    Article  Google Scholar 

  • Woodbury, J. W., andWoodbury, D. M. (1991): ‘Vagal stimulation reduces the severity of maximal electroshock seizures in intact rats: Use of a cuff electrode for stimulating and recording’,Pace,14, pp. 94–107

    Google Scholar 

  • Zhou, L, Munih, M., Haugland, M. K., Perkins, T. A., andDonaldson, N de N. (1998): ‘An implantable telemeter for E.N.G. signals’. Proc. 6th Vienna International Workshop on Functional electrostimulation, Sept., pp. 327–330

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de N. Donaldson, N., Zhou, L., Perkins, T.A. et al. Implantable telemeter for long-term electroneurographic recordings in animals and humans. Med. Biol. Eng. Comput. 41, 654–664 (2003). https://doi.org/10.1007/BF02349973

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02349973

Keywords