Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Applications of interval computations to earthquake-resistant engineering: How to compute derivatives of interval functions fast

Приложение интервальных вычислений к сейсмоустйчивой инженерии: Как быстро вычислить лроизводнйе интервальных функций

  • Published:
Reliable Computing

Abstract

One of the main sources of destruction during earthquake is resonance. Therefore, the following idea has been proposed. We design special control linkages between floors that are normally unattached to the building but can be attached if necessary. They are so designed that adding them changes the building's characteristic frequency. We continuously monitor displacements within the structure, and when they exceed specified limits, the linkages are engaged in a way to control structural motion. This idea can also be applied to avoid vibrational destruction of large aerospace structures.

Abstract

Однн из основных нсточников разрушений при землетрясении — резонанс. В связи с зтим прелложена следуюшая идея. Мы разрабатываем специальные управляюшие связи между зтажами, которые в норме ие соединены с самим зданием, но при необходимости могут быть присоединены. Они созданы так, что их добавление изменяет резонансную частоту здания. Мы последовательно отслеживаем смещения в структуре, и, когда они превышают определенный предел, связи включаются для контроля лвижения системы. Зта илея также может быть применена, чтобы предотвратить вибрационное разрушение в болыцих азрокосмических системах.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aberth, O.Precise numerical analysis Wm. C. Brown. Publ., Dubuque, Iowa, 1988.

    Google Scholar 

  2. Bellman, R.Introduction to matrix analysis. McGraw Hill, N.Y., 1970.

    Google Scholar 

  3. Bohlender, G., Ulrich, C., Wolff von Gudenberg, J., and Rall, L. B.Pascal-SC. A computer language for scientific computations. Academic Press, N.Y., 1987.

    Google Scholar 

  4. Burden, R. L. and Faires, J. D.Numerical analysis. Prindle, Weber & Schmidt, Boston, MA, 1985.

    Google Scholar 

  5. Chung, L. L., Lin, R. C., Soong T. T., and Reinhorn, A. M.,Experimental study of active control for MDOF seismic structures. Journal of Engineering Mechanics115 (8) (1989), pp. 1609–1627.

    Google Scholar 

  6. Corliss, G. F.Applications of differentiation arithmetic. In: Moore, R. E., (ed.) “Reliability in computing”, Academic Press, N.Y., 1988. pp. 127–148.

    Google Scholar 

  7. Dehghanyar, T. J., Masri, S. F., Miller, R. K., and Caughey, T. K.On-line parameter control of nonlinear flexible structures. In: “Proceedings of the 2nd International Symposium on Structural Control, Martinus-Nijhoff, Boston, MA, 1987”, pp. 141–159.

  8. Jaja, J.An introduction to parallel algorithms. Addison-Wesley, Reading, MA, 1992.

    Google Scholar 

  9. Karmarkar, N.A new polynomial-time algorithm for linear programming. Combinatorica4 (1984), pp. 373–396.

    MATH  MathSciNet  Google Scholar 

  10. Kobori, T.State-of-the-art of structural control research in Japan. In: “Proceedings of the US National Workshop on Structural Control, October 25–26, 1990”, pp. p1–p21.

  11. Kobori, T. et al.U.S. Patent No. 5,036,633.

  12. Kobori, T., Kanayama, H., and Kamagata, S.A proposal of new anti-seismic structure with active seismic response control system—dynamic intelligent building. In: “Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo—Kyoto, Japan,VIII”, pp. 465–470.

  13. Kobori T., Kanayama, H., and Kamagata, S.Active seismic response control systems for nuclear power plant equipment facilities. Nuclear Engineering and Design111 (1989), pp. 351–356.

    Article  Google Scholar 

  14. Kobori, T., Yamada, S., and Kamagata, S.U.S. Patent No. 4,922,667.

  15. Kreinovich, V., Lakeyev, A., and Noskov, S.Optimal solution of interval linear systems is intractable (NP-hard). Interval Computations (1) (1993).

  16. Markov, S.Interval differential equations. In: Nickel, K. E. (ed.) “Interval Mathematics 1980”, Academic Press, N.Y., 1980, pp. 145–164.

    Google Scholar 

  17. Meirovitch, L., Baruch, H., and Oz, H.A comparison of control techniques for large flexible structures. Journal of Guidance,6 (4) (1983), pp. 302–310.

    Google Scholar 

  18. Moore, R. E.Automatic local coordinate transformations to reduce the growth of error bounds in interval computation of solution of ordinary differential equations. In: Rall, L. B. (ed.) “Errors in Digital Computations, Proceedings of a Symposium”, John Wiley & Sons, N.Y., 1965, pp. 103–140.

    Google Scholar 

  19. Moore, R. E.Interval analysis. Prentice Hall, Englewood Cliffs, N.J., 1966.

    Google Scholar 

  20. Moore, R. E.Mathematical elements of scientific computing. Holt, Rinehart and Winston, N.Y., 1975.

    Google Scholar 

  21. Moore, R. E.Methods and applications of interval analysis. SIAM, Philadelphia, 1979.

    Google Scholar 

  22. Nemir, D. C., Koivo, A. J., and Kashyap, R. L.Pseudolinks and the self-tuning control of a non-rigid link mechanism, IEEE Transactions on Systems, Man and Cybernetics18 (1) (1988), pp. 40–48.

    Article  Google Scholar 

  23. Osegueda, R. A., Nemir, D. C., and Lin, Y. J.On-line adaptive stiffness control to tailor modal energy contents in structures. In: “ADPA/AIAA/ASME/SPIE Conference on Active Materials and Adaptive Structures, Alexandria, VA, November 5–8, 1991”.

  24. Rall, L. B.Applications of software for automatic differentiation in numerical computation. In: Alefeld, G. and Grigorieff, R. D. (eds) “Fundamentals of Numerical Computations (Computer-Oriented Numerical Analysis)”, Springer-Verlag, Wien, N.Y., 1980, pp. 141–156.

    Google Scholar 

  25. Rall, L. B.Automatic differentiation: techniques and applications. Lecture Notes in Computer Science 120, Springer-Verlag, Berlin-Heidelberg-N.Y., 1981.

    Google Scholar 

  26. Rall, L. B.Differentiation and generation of Taylor coefficients in Pascal-SC. In: Kulisch, U. W. and Miranker, W. L. (eds) “A New Approach to Scientific Computation”, Academic Press, N.Y., 1983, pp. 291–309.

    Google Scholar 

  27. Ratschek, H. and Schröder, G.Über die Abteitung von intervallwertigen Funktionen. Computing7 (1971), pp. 172–187.

    Article  Google Scholar 

  28. Sendov, B.Some topics of segment analysis. In: Nickel, K. E. (ed.) “Interval Mathematics, 1980”, Academic Press, N.Y., 1980, pp. 203–222.

    Google Scholar 

  29. Shary, S. P.Solution of “outer” and “inner” problems for an interval system of linear algebraic equations. Ph.D Dissertation Kransoyarsk—Ekaterinburg, 1991 (in Russian).

  30. Shary, S. P.A new class of algorithms for optimal solution of interval linear systems. Interval Computations (2) (1992), pp. 18–29.

    MATH  MathSciNet  Google Scholar 

  31. Soong, T. T.Active structural control: theory and practice. Longman Scientific, Essex, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreinovich, V., Nemir, D. & Gutierrez, E. Applications of interval computations to earthquake-resistant engineering: How to compute derivatives of interval functions fast. Reliable Comput 1, 141–172 (1995). https://doi.org/10.1007/BF02384052

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02384052

Keywords