Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A software interface and hardware design for variable-precision interval arithmetic

Программный интерфейс и конструкция аппаратуры для интервальной арифметики переменной разрядности

  • Mathematical Research
  • Published:
Reliable Computing

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper presents a software interface and hardware design for variable-precision, interval arithmetic. The software interface gives the programmer the ability to specify the precision of the computation and determine the accuracy of the result Special instructions for vector and matrix operations are also provided. The hardware design directly supports variable-precision, interval arithmetic. This greatly improves the accuracy of the computation and is much faster than existing software methods for controlling numerical error. Hardware algorithms are presented for the basic arithmetic operations, exact dot products, and elementary functions. Area and delay estimates indicate that the processor can be implemented on a single chip with a cycle time that is comparable to existing IEEE double-precision floating point processors.

Abstract

Описываются программный интерфейс и конструкция аппаратуры для интервальной арифметики переменной разрядности. Программный интерфейс дает программисту возможность управлять разрядностью вычислений, определяя точность результата. Также предусмотрены специальные инструкции для векторных и матричных операций. Конструкция аппаратуры напрямую поддерживает интервальную арифметику переменной разрядности, что значительно повышает точность вычислений и обеспечивает выигрыш в скорости в сравнении с сушествуюшими программными методами управления величиной численных погрешностей. Представлены аппаратно реализованные алгоритмы для основных арифметических операций, точных скалярных произведений и элементарных функций. Оценки времени вычислений и требуемой площади кристалла покззывают, что соответствуюший процессор может быть реализован на одном кристалле с рабочей частотой, сравнимой с существующими процессорами плавающей точки двойной точности стандарта IEEE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, E. and Kulisch, U.Scientific computing with automatic result verification. Academic Press, 1993, pp. 1–12.

  2. Anderson, F. S. et al.The IBM System/360 Model 91: floating point execution unit. IBM Journal of Research and Development11 (1967), pp. 24–53.

    Google Scholar 

  3. Bickerstaff, K. C., Schulte, M. J., and Swartzlander, E. E.Reduced area multipliers. In: “Proceedings 1993 Application Specific Array Processors”, 1993, pp. 478–489.

  4. Bohlender, G.What do we need beyond IEEE arithmetic? In: Ullrich, C. (ed.) “Computer Arithmetic and Self-Validating Numerical Methods”, Academic Press, New York, NY, 1990, pp. 1–32.

    Google Scholar 

  5. Brent, R. P. and Kung, H. Y.A regular layout for parallel adders. IEEE Transactions on ComputersC-31 (1982), pp. 260–264.

    MathSciNet  Google Scholar 

  6. Carter, T.Cascade: hardware for high/variable precision arithmetic. In: “Ninth Symposium on Computer Arithmetic”, 1989, pp. 184–191.

  7. Cohen, M., Hull, T., and Hamarcher, V.CADAS: a controlled-precision decimal arithmetic unit. IEEE Transactions on ComputersC-32 (1983), pp. 370–377.

    Google Scholar 

  8. Ely, J. S.The VPI software package for variable precision interval arithmetic. Interval Computations 2 (1993), pp. 135–153.

    MATH  Google Scholar 

  9. Fike, C. T.Computer evaluation of mathematical functions Prentice Hall, Englewood Cliffs, NJ, 1968.

    Google Scholar 

  10. Flynn, M. J.On division by functional iterations. IEEE Transactions on ComputersC-19 (1970) pp. 702–706.

    MATH  Google Scholar 

  11. Hammer, R., Neaga, M., and Ratz, D.Pascal-XSC new concepts for scientific computation and numerical data processing. In: Adams, E. and Kulisch, U. (eds) “Scientific Computing with Automatic Result Verification”, Academic Press, 1993, pp. 15–44.

  12. Hansen, E.Global optimization using interval analysis. Marcel Dekken, New York, NY, 1992.

    Google Scholar 

  13. Knofel, A.Fast hardware units for the computation of accurate dot products. In: “Tenth Symposium on Computer Arithmetic”, 1991, pp. 70–75.

  14. Knofel, A.Hardware kernel for scientific/engineering compuations. In: Adams, E. and Kulisch, U. (eds) “Scientific Computing with Automatic Result Verification”, Academic Press, 1993, pp. 549–570.

  15. Koren, I.Computer arithmetic and algorithms. Prentice Hall, Englewood Cliffs, NJ, 1993.

    Google Scholar 

  16. Krandick, W. and Johnson, J. R.Efficient multiprecision floating point multiplication with optimal directional rounding. In: “Eleventh Symposium on Computer Arithmetic”, 1993, pp. 228–233.

  17. Kulisch, U. W. and Miranker, W. L.Computer arithmetic in theory and in practice. Academic Press, New York, NY, 1981.

    Google Scholar 

  18. IEEE Standard 754 for binary floating point arithmetic. American National Standards Institute, Washington, DC, 1985.

  19. Lawo, C.C-XSC new concepts for scientific computation and numerical data processing. In: Adams, E. and Kulisch, U. (eds) “Scientific Computing with Automatic Result Verification”, Academic Press, 1993, pp. 71–86.

  20. LSI Logic 1.0 micron cell-based products databook. LSI Logic Corporation, Milpitas, California, 1991.

  21. Markstein, P. W.Computation of elementary functions on the IBM RISC System/6000 processor. IBM Journal of Research and Development34 (1990), pp. 111–119.

    MathSciNet  Google Scholar 

  22. Mathews, J. H.Numerical methods for computer science, engineering and mathematics, Prentice Hall, Englewood Cliffs, NJ, 1987.

    Google Scholar 

  23. Moore, R. E.Interval analysis. Prentice Hall, Englewood Cliffs, NJ, 1966.

    Google Scholar 

  24. Ramamoorthy, C. V., Goodman, J. R., and Kim, K. H.Properties of iterative square-rooting methods using high-speed multiplication IEEE Transactions on ComputersC-21 (1972), pp. 837–847.

    Google Scholar 

  25. Reuter, E. K. et al.Some experiments using interval arithmetic. In: “Fourth Symposium on Computer Arithmetic”, 1978, pp. 75–81.

  26. Schulte, M. J. and Swartzlander, E. E.Exact rounding of certain elementary functions. In: “Eleventh Symposium on Computer Arithmetic”, 1993, pp. 128–145.

  27. Schulte, M. J. and Swartzlander, E. E.Parallel hardware designs for correctly rounded elementary functions. Interval Computations4 (1993), pp. 65–88.

    MathSciNet  Google Scholar 

  28. Schulte, M. J., Omar, J., and Swartzlander, E. E.Optimal initial approximations for the Newton-Raphson division algorithm. Submitted to Computing, 1994.

  29. Walter, W. V.Acrith-XSC a Fortran-like language for verified scientific computing. In: Adams, E. and Kulisch, U. (eds) “Scientific Computing with Automatic Result Verification”, Academic Press, 1993, pp. 45–70.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulte, M.J., Swartzlander, E.E. A software interface and hardware design for variable-precision interval arithmetic. Reliable Comput 1, 325–342 (1995). https://doi.org/10.1007/BF02385262

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02385262

Keywords