Abstract
The robust Schur stability of a polynomial with uncertain coefficients will be investigated. A formula for the stability radius of a Schur polynomial is established. The result is the counterpart of [1] for linear discrete-time systems
Abstract
Иаучается робастная Шурова устойчлена с неопреленными коэффициентентами. Дается формуладля радиуса стабильности многочлена Шура. Реэультат дополняет работу [1] для случая линейных сискретного времени.
Similar content being viewed by others
References
Bhattacharyya, S. P..Robust stabilization against, structural perturbations. Lecture Notes in Control and Information Sciences 99, Springer-Verlag, Berlin, 1987.
Fam, A. T. and Meditch, J. S.A canonical parameter space for linear systems design. IEEE Trans. Auto. Contr.AC-23 (1978), pp. 454–458.
Gantmacher, F. R.The theory of matrices. Chelsea Publishing Company, N.Y., 1959.
Soh, C. B., Berger, C. S., and Dabke, K. P.On the stability properties of polynomials with perturbed coefficients. IEEE Trans. Auto. Contr.AC-30 (1985), pp. 1033–1036.
Wu, Q.-H. and Mansour, M.On the stability radius of a Schur polynomial. Systems & Control Letters21, pp. 199–205.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Wu, Q.H., Mansour, M. Computation of the stability radius of a Schur polynomial: an orthogonal projection approach. Reliable Comput 1, 421–430 (1995). https://doi.org/10.1007/BF02391687
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02391687